Loading…

Rolling bearing fault feature detection using nonconvex wavelet total variation

•Nonconvex WATV model is constructed by using MC function.•Convexity of the constructed cost function is guaranteed.•Derive an iterative algorithm to solve the constructed convex optimal problem.•Give a reference for hyper parameter selection.•Detailed simulation and experiments validate the effecti...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2021-07, Vol.179, p.109471, Article 109471
Main Authors: Wang, Kaibo, Jiang, Hongkai, Hai, Bin, Yao, Renhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-a84a1e6a317684ca200818db234b1573230799f8d15e052c0bef36d364d601ac3
cites cdi_FETCH-LOGICAL-c349t-a84a1e6a317684ca200818db234b1573230799f8d15e052c0bef36d364d601ac3
container_end_page
container_issue
container_start_page 109471
container_title Measurement : journal of the International Measurement Confederation
container_volume 179
creator Wang, Kaibo
Jiang, Hongkai
Hai, Bin
Yao, Renhe
description •Nonconvex WATV model is constructed by using MC function.•Convexity of the constructed cost function is guaranteed.•Derive an iterative algorithm to solve the constructed convex optimal problem.•Give a reference for hyper parameter selection.•Detailed simulation and experiments validate the effectiveness of nonconvex WATV. Vibration signals measured from rolling bearing are often used to judge operational condition of rotation machinery. This paper proposes a nonconvex wavelet total variation method to detect rolling bearing fault feature submerged in noise measurement. Firstly, the parametric minmax concave function is used to construct a novel wavelet total variation model to improve the accuracy of signal estimation and induce more strongly sparsity. Second, convexity parameters and regularization parameters are limited in a given region to make sure convexity of the constructed cost function. With this, an iterative algorithm with guaranteed convergence is derived to efficiently obtain the global minimum of the constructed cost function. Simulation analysis and actual application validation show that the proposed method has a good impact estimation performance and impact recoverd by the proposed method preserves more accurate amplitude than that of traditional l1-norm regularized wavelet total variation and Spectral Kurtosis.
doi_str_mv 10.1016/j.measurement.2021.109471
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2553021211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224121004565</els_id><sourcerecordid>2553021211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a84a1e6a317684ca200818db234b1573230799f8d15e052c0bef36d364d601ac3</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-h4rnrpkkTdujLP4DYUEUvIU0nUpLt1mTtOq3N6UePHp6MPPeG-ZHyCXQDVCQ191mj9qPDvc4hA2jDOK8FDkckRUUOU8FsLdjsqJM8pQxAafkzPuOUip5KVdk92z7vh3ekwq1m7XRYx-SBnWIpUmNAU1o7ZCMft4OdjB2mPAr-dQT9hiSYIPukymG9ew7JyeN7j1e_OqavN7dvmwf0qfd_eP25ik1XJQh1YXQgFJzyGUhjGaUFlDUFeOigiznjNO8LJuihgxpxgytsOGy5lLUkoI2fE2ult6Dsx8j-qA6O7ohnlQsy3jkwACiq1xcxlnvHTbq4Nq9dt8KqJr5qU794admfmrhF7PbJYvxjalFp7xpcTBYty4yUbVt_9HyA6Rgf5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553021211</pqid></control><display><type>article</type><title>Rolling bearing fault feature detection using nonconvex wavelet total variation</title><source>ScienceDirect Journals</source><creator>Wang, Kaibo ; Jiang, Hongkai ; Hai, Bin ; Yao, Renhe</creator><creatorcontrib>Wang, Kaibo ; Jiang, Hongkai ; Hai, Bin ; Yao, Renhe</creatorcontrib><description>•Nonconvex WATV model is constructed by using MC function.•Convexity of the constructed cost function is guaranteed.•Derive an iterative algorithm to solve the constructed convex optimal problem.•Give a reference for hyper parameter selection.•Detailed simulation and experiments validate the effectiveness of nonconvex WATV. Vibration signals measured from rolling bearing are often used to judge operational condition of rotation machinery. This paper proposes a nonconvex wavelet total variation method to detect rolling bearing fault feature submerged in noise measurement. Firstly, the parametric minmax concave function is used to construct a novel wavelet total variation model to improve the accuracy of signal estimation and induce more strongly sparsity. Second, convexity parameters and regularization parameters are limited in a given region to make sure convexity of the constructed cost function. With this, an iterative algorithm with guaranteed convergence is derived to efficiently obtain the global minimum of the constructed cost function. Simulation analysis and actual application validation show that the proposed method has a good impact estimation performance and impact recoverd by the proposed method preserves more accurate amplitude than that of traditional l1-norm regularized wavelet total variation and Spectral Kurtosis.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2021.109471</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Bearings ; Convex optimization ; Convexity ; Cost analysis ; Cost function ; Fault feature detection ; Iterative algorithms ; Iterative methods ; Kurtosis ; Mathematical models ; Minmax concave penalty ; Model accuracy ; Noise measurement ; Nonconvex wavelet total variation ; Parameters ; Regularization ; Roller bearings ; Rolling bearng ; Rotating machinery ; Studies ; Vibration ; Vibration measurement</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2021-07, Vol.179, p.109471, Article 109471</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a84a1e6a317684ca200818db234b1573230799f8d15e052c0bef36d364d601ac3</citedby><cites>FETCH-LOGICAL-c349t-a84a1e6a317684ca200818db234b1573230799f8d15e052c0bef36d364d601ac3</cites><orcidid>0000-0002-6672-7021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Kaibo</creatorcontrib><creatorcontrib>Jiang, Hongkai</creatorcontrib><creatorcontrib>Hai, Bin</creatorcontrib><creatorcontrib>Yao, Renhe</creatorcontrib><title>Rolling bearing fault feature detection using nonconvex wavelet total variation</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Nonconvex WATV model is constructed by using MC function.•Convexity of the constructed cost function is guaranteed.•Derive an iterative algorithm to solve the constructed convex optimal problem.•Give a reference for hyper parameter selection.•Detailed simulation and experiments validate the effectiveness of nonconvex WATV. Vibration signals measured from rolling bearing are often used to judge operational condition of rotation machinery. This paper proposes a nonconvex wavelet total variation method to detect rolling bearing fault feature submerged in noise measurement. Firstly, the parametric minmax concave function is used to construct a novel wavelet total variation model to improve the accuracy of signal estimation and induce more strongly sparsity. Second, convexity parameters and regularization parameters are limited in a given region to make sure convexity of the constructed cost function. With this, an iterative algorithm with guaranteed convergence is derived to efficiently obtain the global minimum of the constructed cost function. Simulation analysis and actual application validation show that the proposed method has a good impact estimation performance and impact recoverd by the proposed method preserves more accurate amplitude than that of traditional l1-norm regularized wavelet total variation and Spectral Kurtosis.</description><subject>Bearings</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Cost analysis</subject><subject>Cost function</subject><subject>Fault feature detection</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Kurtosis</subject><subject>Mathematical models</subject><subject>Minmax concave penalty</subject><subject>Model accuracy</subject><subject>Noise measurement</subject><subject>Nonconvex wavelet total variation</subject><subject>Parameters</subject><subject>Regularization</subject><subject>Roller bearings</subject><subject>Rolling bearng</subject><subject>Rotating machinery</subject><subject>Studies</subject><subject>Vibration</subject><subject>Vibration measurement</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK5-h4rnrpkkTdujLP4DYUEUvIU0nUpLt1mTtOq3N6UePHp6MPPeG-ZHyCXQDVCQ191mj9qPDvc4hA2jDOK8FDkckRUUOU8FsLdjsqJM8pQxAafkzPuOUip5KVdk92z7vh3ekwq1m7XRYx-SBnWIpUmNAU1o7ZCMft4OdjB2mPAr-dQT9hiSYIPukymG9ew7JyeN7j1e_OqavN7dvmwf0qfd_eP25ik1XJQh1YXQgFJzyGUhjGaUFlDUFeOigiznjNO8LJuihgxpxgytsOGy5lLUkoI2fE2ult6Dsx8j-qA6O7ohnlQsy3jkwACiq1xcxlnvHTbq4Nq9dt8KqJr5qU794admfmrhF7PbJYvxjalFp7xpcTBYty4yUbVt_9HyA6Rgf5s</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Wang, Kaibo</creator><creator>Jiang, Hongkai</creator><creator>Hai, Bin</creator><creator>Yao, Renhe</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6672-7021</orcidid></search><sort><creationdate>202107</creationdate><title>Rolling bearing fault feature detection using nonconvex wavelet total variation</title><author>Wang, Kaibo ; Jiang, Hongkai ; Hai, Bin ; Yao, Renhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a84a1e6a317684ca200818db234b1573230799f8d15e052c0bef36d364d601ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bearings</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Cost analysis</topic><topic>Cost function</topic><topic>Fault feature detection</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Kurtosis</topic><topic>Mathematical models</topic><topic>Minmax concave penalty</topic><topic>Model accuracy</topic><topic>Noise measurement</topic><topic>Nonconvex wavelet total variation</topic><topic>Parameters</topic><topic>Regularization</topic><topic>Roller bearings</topic><topic>Rolling bearng</topic><topic>Rotating machinery</topic><topic>Studies</topic><topic>Vibration</topic><topic>Vibration measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaibo</creatorcontrib><creatorcontrib>Jiang, Hongkai</creatorcontrib><creatorcontrib>Hai, Bin</creatorcontrib><creatorcontrib>Yao, Renhe</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaibo</au><au>Jiang, Hongkai</au><au>Hai, Bin</au><au>Yao, Renhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolling bearing fault feature detection using nonconvex wavelet total variation</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2021-07</date><risdate>2021</risdate><volume>179</volume><spage>109471</spage><pages>109471-</pages><artnum>109471</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Nonconvex WATV model is constructed by using MC function.•Convexity of the constructed cost function is guaranteed.•Derive an iterative algorithm to solve the constructed convex optimal problem.•Give a reference for hyper parameter selection.•Detailed simulation and experiments validate the effectiveness of nonconvex WATV. Vibration signals measured from rolling bearing are often used to judge operational condition of rotation machinery. This paper proposes a nonconvex wavelet total variation method to detect rolling bearing fault feature submerged in noise measurement. Firstly, the parametric minmax concave function is used to construct a novel wavelet total variation model to improve the accuracy of signal estimation and induce more strongly sparsity. Second, convexity parameters and regularization parameters are limited in a given region to make sure convexity of the constructed cost function. With this, an iterative algorithm with guaranteed convergence is derived to efficiently obtain the global minimum of the constructed cost function. Simulation analysis and actual application validation show that the proposed method has a good impact estimation performance and impact recoverd by the proposed method preserves more accurate amplitude than that of traditional l1-norm regularized wavelet total variation and Spectral Kurtosis.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2021.109471</doi><orcidid>https://orcid.org/0000-0002-6672-7021</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2021-07, Vol.179, p.109471, Article 109471
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2553021211
source ScienceDirect Journals
subjects Bearings
Convex optimization
Convexity
Cost analysis
Cost function
Fault feature detection
Iterative algorithms
Iterative methods
Kurtosis
Mathematical models
Minmax concave penalty
Model accuracy
Noise measurement
Nonconvex wavelet total variation
Parameters
Regularization
Roller bearings
Rolling bearng
Rotating machinery
Studies
Vibration
Vibration measurement
title Rolling bearing fault feature detection using nonconvex wavelet total variation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolling%20bearing%20fault%20feature%20detection%20using%20nonconvex%20wavelet%20total%20variation&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Wang,%20Kaibo&rft.date=2021-07&rft.volume=179&rft.spage=109471&rft.pages=109471-&rft.artnum=109471&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2021.109471&rft_dat=%3Cproquest_cross%3E2553021211%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-a84a1e6a317684ca200818db234b1573230799f8d15e052c0bef36d364d601ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553021211&rft_id=info:pmid/&rfr_iscdi=true