Loading…

Evolutionary history of Caulobacter toxin–antitoxin systems

Toxin–antitoxin (TA) systems have been studied in many bacterial genera, but a clear understanding of the evolutionary trajectory of TA operons has not emerged. To address this issue, I identified 42 distinct TA operons in three genomes that represent the three branches of the Caulobacter phylogenet...

Full description

Saved in:
Bibliographic Details
Published in:Current microbiology 2021-08, Vol.78 (8), p.2899-2904
Main Author: Ely, Bert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Toxin–antitoxin (TA) systems have been studied in many bacterial genera, but a clear understanding of the evolutionary trajectory of TA operons has not emerged. To address this issue, I identified 42 distinct TA operons in three genomes that represent the three branches of the Caulobacter phylogenetic tree. The location of each operon was then examined to determine if the operon was present in eight additional Caulobacter genomes. Most of the 42 TA operons were present at the same chromosomal location in genomes that represent at least two different branches of the Caulobacter phylogenetic tree. This result indicates that the chromosomal location of TA operons is conserved over evolutionary time scales. One the other hand, there were 177 instances where a TA operon was not present at an expected chromosomal location and four instances where only the antitoxin gene was present. Thus, the variable number of TA operons found in each genome appears to be due primarily to the loss of TA operons, and the addition of new TA operons to a genome was relatively rare. An additional feature of the TA operons was that they seemed to accumulate mutations faster than the adjacent genes.
ISSN:0343-8651
1432-0991
DOI:10.1007/s00284-021-02549-y