Loading…
Colloidal quantum dots and metal halide perovskite hybridization for solar cell stability and performance enhancement
Metal halide perovskites and colloidal quantum dots (QDs) are two emerging classes of photoactive materials that have attracted considerable attention for next-generation high-performance solution-processed solar cells. In particular, the hybridization of these two types of materials has recently de...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-07, Vol.9 (28), p.15522-15541 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-70e6584b7566410d1ef5bca4308ace76dcb3c95cd04f176f97999e58371a98d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-70e6584b7566410d1ef5bca4308ace76dcb3c95cd04f176f97999e58371a98d43 |
container_end_page | 15541 |
container_issue | 28 |
container_start_page | 15522 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Yan, Dong Liu, Mengxia Li, Zhe Hou, Bo |
description | Metal halide perovskites and colloidal quantum dots (QDs) are two emerging classes of photoactive materials that have attracted considerable attention for next-generation high-performance solution-processed solar cells. In particular, the hybridization of these two types of materials has recently demonstrated remarkable performance enhancement due to the complementary nature of the two constituents. In this review, we will highlight the recent progress of QDs and perovskite hybridization in solar cell applications. More specifically, the unique properties of monophase perovskite QDs will be summarised, and are demonstrated by homogeneously hybridizing perovskite QDs into the perovskite lattice. We also discuss the recent progress in heterogeneously hybridizing discrete colloidal QDs into perovskite layers which results in significant enhancement in perovskite film stability as well as corresponding solar cell performance improvement. PbS QDs, other chalcogenide QDs, and emerging two-dimensional QDs are further accounted through multiple methods, such as constructing bilayer architectures and core-shell structures or blending multiple QDs into perovskite layers. In the end, an outlook perspective of this field has been proposed to point out several challenges and possible solutions.
Metal halide perovskites and colloidal quantum dots (QDs) are two emerging classes of photoactive materials that have attracted considerable attention for next-generation high-performance solution-processed solar cells. |
doi_str_mv | 10.1039/d1ta02214h |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2553198827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553198827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-70e6584b7566410d1ef5bca4308ace76dcb3c95cd04f176f97999e58371a98d43</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWGov3oWAN2E12Ww2ybHUjwoFL_W8ZJMsm5rdtElWqH-921bqXN4w85s38AC4xegRIyKeNE4S5Tku2gswyRFFGStEeXnuOb8Gsxg3aCyOUCnEBAwL75y3Wjq4G2Sfhg5qnyKUvYadSeO4lc5qA7cm-O_4ZZOB7b4OVtsfmazvYeMDjN7JAJVxDsYka-ts2h8txqtx38leGWj69qCd6dMNuGqki2b2p1Pw-fqyXiyz1cfb-2K-yhThJGUMmZLyoma0LAuMNDYNrZUsCOJSGVZqVRMlqNKoaDArG8GEEIZywrAUXBdkCu5Pvtvgd4OJqdr4IfTjyyqnlGDBec5G6uFEqeBjDKaptsF2MuwrjKpDstUzXs-PyS5H-O4Eh6jO3H_y5BeUsXcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553198827</pqid></control><display><type>article</type><title>Colloidal quantum dots and metal halide perovskite hybridization for solar cell stability and performance enhancement</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yan, Dong ; Liu, Mengxia ; Li, Zhe ; Hou, Bo</creator><creatorcontrib>Yan, Dong ; Liu, Mengxia ; Li, Zhe ; Hou, Bo</creatorcontrib><description>Metal halide perovskites and colloidal quantum dots (QDs) are two emerging classes of photoactive materials that have attracted considerable attention for next-generation high-performance solution-processed solar cells. In particular, the hybridization of these two types of materials has recently demonstrated remarkable performance enhancement due to the complementary nature of the two constituents. In this review, we will highlight the recent progress of QDs and perovskite hybridization in solar cell applications. More specifically, the unique properties of monophase perovskite QDs will be summarised, and are demonstrated by homogeneously hybridizing perovskite QDs into the perovskite lattice. We also discuss the recent progress in heterogeneously hybridizing discrete colloidal QDs into perovskite layers which results in significant enhancement in perovskite film stability as well as corresponding solar cell performance improvement. PbS QDs, other chalcogenide QDs, and emerging two-dimensional QDs are further accounted through multiple methods, such as constructing bilayer architectures and core-shell structures or blending multiple QDs into perovskite layers. In the end, an outlook perspective of this field has been proposed to point out several challenges and possible solutions.
Metal halide perovskites and colloidal quantum dots (QDs) are two emerging classes of photoactive materials that have attracted considerable attention for next-generation high-performance solution-processed solar cells.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta02214h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Colloids ; Core-shell structure ; Hybridization ; Metal halides ; Performance enhancement ; Perovskites ; Photovoltaic cells ; Quantum dots ; Solar cells ; Stability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-07, Vol.9 (28), p.15522-15541</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-70e6584b7566410d1ef5bca4308ace76dcb3c95cd04f176f97999e58371a98d43</citedby><cites>FETCH-LOGICAL-c383t-70e6584b7566410d1ef5bca4308ace76dcb3c95cd04f176f97999e58371a98d43</cites><orcidid>0000-0002-7404-7448 ; 0000-0001-9918-8223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Dong</creatorcontrib><creatorcontrib>Liu, Mengxia</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Hou, Bo</creatorcontrib><title>Colloidal quantum dots and metal halide perovskite hybridization for solar cell stability and performance enhancement</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Metal halide perovskites and colloidal quantum dots (QDs) are two emerging classes of photoactive materials that have attracted considerable attention for next-generation high-performance solution-processed solar cells. In particular, the hybridization of these two types of materials has recently demonstrated remarkable performance enhancement due to the complementary nature of the two constituents. In this review, we will highlight the recent progress of QDs and perovskite hybridization in solar cell applications. More specifically, the unique properties of monophase perovskite QDs will be summarised, and are demonstrated by homogeneously hybridizing perovskite QDs into the perovskite lattice. We also discuss the recent progress in heterogeneously hybridizing discrete colloidal QDs into perovskite layers which results in significant enhancement in perovskite film stability as well as corresponding solar cell performance improvement. PbS QDs, other chalcogenide QDs, and emerging two-dimensional QDs are further accounted through multiple methods, such as constructing bilayer architectures and core-shell structures or blending multiple QDs into perovskite layers. In the end, an outlook perspective of this field has been proposed to point out several challenges and possible solutions.
Metal halide perovskites and colloidal quantum dots (QDs) are two emerging classes of photoactive materials that have attracted considerable attention for next-generation high-performance solution-processed solar cells.</description><subject>Colloids</subject><subject>Core-shell structure</subject><subject>Hybridization</subject><subject>Metal halides</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Solar cells</subject><subject>Stability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWGov3oWAN2E12Ww2ybHUjwoFL_W8ZJMsm5rdtElWqH-921bqXN4w85s38AC4xegRIyKeNE4S5Tku2gswyRFFGStEeXnuOb8Gsxg3aCyOUCnEBAwL75y3Wjq4G2Sfhg5qnyKUvYadSeO4lc5qA7cm-O_4ZZOB7b4OVtsfmazvYeMDjN7JAJVxDsYka-ts2h8txqtx38leGWj69qCd6dMNuGqki2b2p1Pw-fqyXiyz1cfb-2K-yhThJGUMmZLyoma0LAuMNDYNrZUsCOJSGVZqVRMlqNKoaDArG8GEEIZywrAUXBdkCu5Pvtvgd4OJqdr4IfTjyyqnlGDBec5G6uFEqeBjDKaptsF2MuwrjKpDstUzXs-PyS5H-O4Eh6jO3H_y5BeUsXcM</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Yan, Dong</creator><creator>Liu, Mengxia</creator><creator>Li, Zhe</creator><creator>Hou, Bo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7404-7448</orcidid><orcidid>https://orcid.org/0000-0001-9918-8223</orcidid></search><sort><creationdate>20210728</creationdate><title>Colloidal quantum dots and metal halide perovskite hybridization for solar cell stability and performance enhancement</title><author>Yan, Dong ; Liu, Mengxia ; Li, Zhe ; Hou, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-70e6584b7566410d1ef5bca4308ace76dcb3c95cd04f176f97999e58371a98d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Colloids</topic><topic>Core-shell structure</topic><topic>Hybridization</topic><topic>Metal halides</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Dong</creatorcontrib><creatorcontrib>Liu, Mengxia</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Hou, Bo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Dong</au><au>Liu, Mengxia</au><au>Li, Zhe</au><au>Hou, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal quantum dots and metal halide perovskite hybridization for solar cell stability and performance enhancement</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-07-28</date><risdate>2021</risdate><volume>9</volume><issue>28</issue><spage>15522</spage><epage>15541</epage><pages>15522-15541</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Metal halide perovskites and colloidal quantum dots (QDs) are two emerging classes of photoactive materials that have attracted considerable attention for next-generation high-performance solution-processed solar cells. In particular, the hybridization of these two types of materials has recently demonstrated remarkable performance enhancement due to the complementary nature of the two constituents. In this review, we will highlight the recent progress of QDs and perovskite hybridization in solar cell applications. More specifically, the unique properties of monophase perovskite QDs will be summarised, and are demonstrated by homogeneously hybridizing perovskite QDs into the perovskite lattice. We also discuss the recent progress in heterogeneously hybridizing discrete colloidal QDs into perovskite layers which results in significant enhancement in perovskite film stability as well as corresponding solar cell performance improvement. PbS QDs, other chalcogenide QDs, and emerging two-dimensional QDs are further accounted through multiple methods, such as constructing bilayer architectures and core-shell structures or blending multiple QDs into perovskite layers. In the end, an outlook perspective of this field has been proposed to point out several challenges and possible solutions.
Metal halide perovskites and colloidal quantum dots (QDs) are two emerging classes of photoactive materials that have attracted considerable attention for next-generation high-performance solution-processed solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta02214h</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-7404-7448</orcidid><orcidid>https://orcid.org/0000-0001-9918-8223</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-07, Vol.9 (28), p.15522-15541 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2553198827 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Colloids Core-shell structure Hybridization Metal halides Performance enhancement Perovskites Photovoltaic cells Quantum dots Solar cells Stability |
title | Colloidal quantum dots and metal halide perovskite hybridization for solar cell stability and performance enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20quantum%20dots%20and%20metal%20halide%20perovskite%20hybridization%20for%20solar%20cell%20stability%20and%20performance%20enhancement&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Yan,%20Dong&rft.date=2021-07-28&rft.volume=9&rft.issue=28&rft.spage=15522&rft.epage=15541&rft.pages=15522-15541&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta02214h&rft_dat=%3Cproquest_cross%3E2553198827%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-70e6584b7566410d1ef5bca4308ace76dcb3c95cd04f176f97999e58371a98d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553198827&rft_id=info:pmid/&rfr_iscdi=true |