Loading…
Stabilization of Nonlinear Systems with Dynamic Chaos
The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a...
Saved in:
Published in: | Automatic control and computer sciences 2021-05, Vol.55 (3), p.213-221 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13 |
container_end_page | 221 |
container_issue | 3 |
container_start_page | 213 |
container_title | Automatic control and computer sciences |
container_volume | 55 |
creator | Budnik, S. V. Shashihin, V. N. |
description | The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a limit cycle in a closed-loop system. The parameters of the stabilizing control are determined by solving a Sylvester matrix equation. An example of using the proposed methodology to synthesize control for a Rössler system is described. |
doi_str_mv | 10.3103/S0146411621030032 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2553316557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553316557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwueV2fy2u1R6hOKHlbB25KmE5vSbmqyReqvN6WCB_E0DN-Tj7FzhEuBIK4aQKkloub5AxD8gA1QqbpEqN8O2WAHlzv8mJ2ktADIWK0HTDW9mfql_zK9D10RXPEUuqXvyMSi2aaeVqn49P28uNl2ZuVtMZ6bkE7ZkTPLRGc_d8he725fxg_l5Pn-cXw9Ka1A3ZfkLLdS6qquSBKXowoUkSIuZiSccLkCcjfSSgIKw2utZ2CmALK2Ss4siiG72PuuY_jYUOrbRdjELke2XCmRQ5SqMgv3LBtDSpFcu45-ZeK2RWh367R_1skavtekzO3eKf46_y_6Br1wZEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553316557</pqid></control><display><type>article</type><title>Stabilization of Nonlinear Systems with Dynamic Chaos</title><source>Springer Nature</source><creator>Budnik, S. V. ; Shashihin, V. N.</creator><creatorcontrib>Budnik, S. V. ; Shashihin, V. N.</creatorcontrib><description>The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a limit cycle in a closed-loop system. The parameters of the stabilizing control are determined by solving a Sylvester matrix equation. An example of using the proposed methodology to synthesize control for a Rössler system is described.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411621030032</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computer Science ; Control stability ; Control Structures and Microprogramming ; Control systems ; Feedback control ; Nonlinear systems ; Stabilization ; Synthesis</subject><ispartof>Automatic control and computer sciences, 2021-05, Vol.55 (3), p.213-221</ispartof><rights>Allerton Press, Inc. 2021. ISSN 0146-4116, Automatic Control and Computer Sciences, 2021, Vol. 55, No. 3, pp. 213–221. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Avtomatika i Vychislitel’naya Tekhnika, 2021, No. 3, pp. 20–30.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13</citedby><cites>FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Budnik, S. V.</creatorcontrib><creatorcontrib>Shashihin, V. N.</creatorcontrib><title>Stabilization of Nonlinear Systems with Dynamic Chaos</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a limit cycle in a closed-loop system. The parameters of the stabilizing control are determined by solving a Sylvester matrix equation. An example of using the proposed methodology to synthesize control for a Rössler system is described.</description><subject>Computer Science</subject><subject>Control stability</subject><subject>Control Structures and Microprogramming</subject><subject>Control systems</subject><subject>Feedback control</subject><subject>Nonlinear systems</subject><subject>Stabilization</subject><subject>Synthesis</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwueV2fy2u1R6hOKHlbB25KmE5vSbmqyReqvN6WCB_E0DN-Tj7FzhEuBIK4aQKkloub5AxD8gA1QqbpEqN8O2WAHlzv8mJ2ktADIWK0HTDW9mfql_zK9D10RXPEUuqXvyMSi2aaeVqn49P28uNl2ZuVtMZ6bkE7ZkTPLRGc_d8he725fxg_l5Pn-cXw9Ka1A3ZfkLLdS6qquSBKXowoUkSIuZiSccLkCcjfSSgIKw2utZ2CmALK2Ss4siiG72PuuY_jYUOrbRdjELke2XCmRQ5SqMgv3LBtDSpFcu45-ZeK2RWh367R_1skavtekzO3eKf46_y_6Br1wZEg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Budnik, S. V.</creator><creator>Shashihin, V. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Stabilization of Nonlinear Systems with Dynamic Chaos</title><author>Budnik, S. V. ; Shashihin, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Control stability</topic><topic>Control Structures and Microprogramming</topic><topic>Control systems</topic><topic>Feedback control</topic><topic>Nonlinear systems</topic><topic>Stabilization</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budnik, S. V.</creatorcontrib><creatorcontrib>Shashihin, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budnik, S. V.</au><au>Shashihin, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Nonlinear Systems with Dynamic Chaos</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>55</volume><issue>3</issue><spage>213</spage><epage>221</epage><pages>213-221</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a limit cycle in a closed-loop system. The parameters of the stabilizing control are determined by solving a Sylvester matrix equation. An example of using the proposed methodology to synthesize control for a Rössler system is described.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411621030032</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-4116 |
ispartof | Automatic control and computer sciences, 2021-05, Vol.55 (3), p.213-221 |
issn | 0146-4116 1558-108X |
language | eng |
recordid | cdi_proquest_journals_2553316557 |
source | Springer Nature |
subjects | Computer Science Control stability Control Structures and Microprogramming Control systems Feedback control Nonlinear systems Stabilization Synthesis |
title | Stabilization of Nonlinear Systems with Dynamic Chaos |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Nonlinear%20Systems%20with%20Dynamic%20Chaos&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Budnik,%20S.%20V.&rft.date=2021-05-01&rft.volume=55&rft.issue=3&rft.spage=213&rft.epage=221&rft.pages=213-221&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411621030032&rft_dat=%3Cproquest_cross%3E2553316557%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553316557&rft_id=info:pmid/&rfr_iscdi=true |