Loading…

Stabilization of Nonlinear Systems with Dynamic Chaos

The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a...

Full description

Saved in:
Bibliographic Details
Published in:Automatic control and computer sciences 2021-05, Vol.55 (3), p.213-221
Main Authors: Budnik, S. V., Shashihin, V. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13
cites cdi_FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13
container_end_page 221
container_issue 3
container_start_page 213
container_title Automatic control and computer sciences
container_volume 55
creator Budnik, S. V.
Shashihin, V. N.
description The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a limit cycle in a closed-loop system. The parameters of the stabilizing control are determined by solving a Sylvester matrix equation. An example of using the proposed methodology to synthesize control for a Rössler system is described.
doi_str_mv 10.3103/S0146411621030032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2553316557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553316557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwueV2fy2u1R6hOKHlbB25KmE5vSbmqyReqvN6WCB_E0DN-Tj7FzhEuBIK4aQKkloub5AxD8gA1QqbpEqN8O2WAHlzv8mJ2ktADIWK0HTDW9mfql_zK9D10RXPEUuqXvyMSi2aaeVqn49P28uNl2ZuVtMZ6bkE7ZkTPLRGc_d8he725fxg_l5Pn-cXw9Ka1A3ZfkLLdS6qquSBKXowoUkSIuZiSccLkCcjfSSgIKw2utZ2CmALK2Ss4siiG72PuuY_jYUOrbRdjELke2XCmRQ5SqMgv3LBtDSpFcu45-ZeK2RWh367R_1skavtekzO3eKf46_y_6Br1wZEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553316557</pqid></control><display><type>article</type><title>Stabilization of Nonlinear Systems with Dynamic Chaos</title><source>Springer Nature</source><creator>Budnik, S. V. ; Shashihin, V. N.</creator><creatorcontrib>Budnik, S. V. ; Shashihin, V. N.</creatorcontrib><description>The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a limit cycle in a closed-loop system. The parameters of the stabilizing control are determined by solving a Sylvester matrix equation. An example of using the proposed methodology to synthesize control for a Rössler system is described.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411621030032</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computer Science ; Control stability ; Control Structures and Microprogramming ; Control systems ; Feedback control ; Nonlinear systems ; Stabilization ; Synthesis</subject><ispartof>Automatic control and computer sciences, 2021-05, Vol.55 (3), p.213-221</ispartof><rights>Allerton Press, Inc. 2021. ISSN 0146-4116, Automatic Control and Computer Sciences, 2021, Vol. 55, No. 3, pp. 213–221. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Avtomatika i Vychislitel’naya Tekhnika, 2021, No. 3, pp. 20–30.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13</citedby><cites>FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Budnik, S. V.</creatorcontrib><creatorcontrib>Shashihin, V. N.</creatorcontrib><title>Stabilization of Nonlinear Systems with Dynamic Chaos</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a limit cycle in a closed-loop system. The parameters of the stabilizing control are determined by solving a Sylvester matrix equation. An example of using the proposed methodology to synthesize control for a Rössler system is described.</description><subject>Computer Science</subject><subject>Control stability</subject><subject>Control Structures and Microprogramming</subject><subject>Control systems</subject><subject>Feedback control</subject><subject>Nonlinear systems</subject><subject>Stabilization</subject><subject>Synthesis</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwueV2fy2u1R6hOKHlbB25KmE5vSbmqyReqvN6WCB_E0DN-Tj7FzhEuBIK4aQKkloub5AxD8gA1QqbpEqN8O2WAHlzv8mJ2ktADIWK0HTDW9mfql_zK9D10RXPEUuqXvyMSi2aaeVqn49P28uNl2ZuVtMZ6bkE7ZkTPLRGc_d8he725fxg_l5Pn-cXw9Ka1A3ZfkLLdS6qquSBKXowoUkSIuZiSccLkCcjfSSgIKw2utZ2CmALK2Ss4siiG72PuuY_jYUOrbRdjELke2XCmRQ5SqMgv3LBtDSpFcu45-ZeK2RWh367R_1skavtekzO3eKf46_y_6Br1wZEg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Budnik, S. V.</creator><creator>Shashihin, V. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Stabilization of Nonlinear Systems with Dynamic Chaos</title><author>Budnik, S. V. ; Shashihin, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Control stability</topic><topic>Control Structures and Microprogramming</topic><topic>Control systems</topic><topic>Feedback control</topic><topic>Nonlinear systems</topic><topic>Stabilization</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budnik, S. V.</creatorcontrib><creatorcontrib>Shashihin, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budnik, S. V.</au><au>Shashihin, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Nonlinear Systems with Dynamic Chaos</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>55</volume><issue>3</issue><spage>213</spage><epage>221</epage><pages>213-221</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>The stabilization problem for nonlinear autonomous systems with dynamic chaos is considered. The proposed control synthesis methodology is based on the control spectrum of Lyapunov characteristic exponents. The synthesized feedback control makes it possible to ensure stability of special points or a limit cycle in a closed-loop system. The parameters of the stabilizing control are determined by solving a Sylvester matrix equation. An example of using the proposed methodology to synthesize control for a Rössler system is described.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411621030032</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2021-05, Vol.55 (3), p.213-221
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_2553316557
source Springer Nature
subjects Computer Science
Control stability
Control Structures and Microprogramming
Control systems
Feedback control
Nonlinear systems
Stabilization
Synthesis
title Stabilization of Nonlinear Systems with Dynamic Chaos
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Nonlinear%20Systems%20with%20Dynamic%20Chaos&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Budnik,%20S.%20V.&rft.date=2021-05-01&rft.volume=55&rft.issue=3&rft.spage=213&rft.epage=221&rft.pages=213-221&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411621030032&rft_dat=%3Cproquest_cross%3E2553316557%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-efc2c446787e4e249705ee5e23de3f3f58812f9654013a2866d0ab0048c54dc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553316557&rft_id=info:pmid/&rfr_iscdi=true