Loading…
Long-term series forecasting with Query Selector -- efficient model of sparse attention
Various modifications of TRANSFORMER were recently used to solve time-series forecasting problem. We propose Query Selector - an efficient, deterministic algorithm for sparse attention matrix. Experiments show it achieves state-of-the art results on ETT, Helpdesk and BPI'12 datasets.
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Klimek, Jacek Klimek, Jakub Kraskiewicz, Witold Topolewski, Mateusz |
description | Various modifications of TRANSFORMER were recently used to solve time-series forecasting problem. We propose Query Selector - an efficient, deterministic algorithm for sparse attention matrix. Experiments show it achieves state-of-the art results on ETT, Helpdesk and BPI'12 datasets. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2553400273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553400273</sourcerecordid><originalsourceid>FETCH-proquest_journals_25534002733</originalsourceid><addsrcrecordid>eNqNjkEKwjAQRYMgWLR3GHAdqElr3Yviwo0ouJRQJzWlTepMinh7K3gAVw_--4s3EYnSeiU3uVIzkTI3WZapdamKQifiegy-lhGpA0ZyyGADYWU4Ol_Dy8UHnAakN5yxxSoGAikBrXWVQx-hC3dsIVjg3hAjmBjH2QW_EFNrWsb0x7lY7neX7UH2FJ4Dcrw1YSA_qts3JB-TSq3_e30ATChBcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553400273</pqid></control><display><type>article</type><title>Long-term series forecasting with Query Selector -- efficient model of sparse attention</title><source>Publicly Available Content Database</source><creator>Klimek, Jacek ; Klimek, Jakub ; Kraskiewicz, Witold ; Topolewski, Mateusz</creator><creatorcontrib>Klimek, Jacek ; Klimek, Jakub ; Kraskiewicz, Witold ; Topolewski, Mateusz</creatorcontrib><description>Various modifications of TRANSFORMER were recently used to solve time-series forecasting problem. We propose Query Selector - an efficient, deterministic algorithm for sparse attention matrix. Experiments show it achieves state-of-the art results on ETT, Helpdesk and BPI'12 datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Forecasting</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2553400273?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Klimek, Jacek</creatorcontrib><creatorcontrib>Klimek, Jakub</creatorcontrib><creatorcontrib>Kraskiewicz, Witold</creatorcontrib><creatorcontrib>Topolewski, Mateusz</creatorcontrib><title>Long-term series forecasting with Query Selector -- efficient model of sparse attention</title><title>arXiv.org</title><description>Various modifications of TRANSFORMER were recently used to solve time-series forecasting problem. We propose Query Selector - an efficient, deterministic algorithm for sparse attention matrix. Experiments show it achieves state-of-the art results on ETT, Helpdesk and BPI'12 datasets.</description><subject>Algorithms</subject><subject>Forecasting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjkEKwjAQRYMgWLR3GHAdqElr3Yviwo0ouJRQJzWlTepMinh7K3gAVw_--4s3EYnSeiU3uVIzkTI3WZapdamKQifiegy-lhGpA0ZyyGADYWU4Ol_Dy8UHnAakN5yxxSoGAikBrXWVQx-hC3dsIVjg3hAjmBjH2QW_EFNrWsb0x7lY7neX7UH2FJ4Dcrw1YSA_qts3JB-TSq3_e30ATChBcw</recordid><startdate>20210817</startdate><enddate>20210817</enddate><creator>Klimek, Jacek</creator><creator>Klimek, Jakub</creator><creator>Kraskiewicz, Witold</creator><creator>Topolewski, Mateusz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210817</creationdate><title>Long-term series forecasting with Query Selector -- efficient model of sparse attention</title><author>Klimek, Jacek ; Klimek, Jakub ; Kraskiewicz, Witold ; Topolewski, Mateusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25534002733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Klimek, Jacek</creatorcontrib><creatorcontrib>Klimek, Jakub</creatorcontrib><creatorcontrib>Kraskiewicz, Witold</creatorcontrib><creatorcontrib>Topolewski, Mateusz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klimek, Jacek</au><au>Klimek, Jakub</au><au>Kraskiewicz, Witold</au><au>Topolewski, Mateusz</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Long-term series forecasting with Query Selector -- efficient model of sparse attention</atitle><jtitle>arXiv.org</jtitle><date>2021-08-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Various modifications of TRANSFORMER were recently used to solve time-series forecasting problem. We propose Query Selector - an efficient, deterministic algorithm for sparse attention matrix. Experiments show it achieves state-of-the art results on ETT, Helpdesk and BPI'12 datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2553400273 |
source | Publicly Available Content Database |
subjects | Algorithms Forecasting |
title | Long-term series forecasting with Query Selector -- efficient model of sparse attention |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Long-term%20series%20forecasting%20with%20Query%20Selector%20--%20efficient%20model%20of%20sparse%20attention&rft.jtitle=arXiv.org&rft.au=Klimek,%20Jacek&rft.date=2021-08-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2553400273%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25534002733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553400273&rft_id=info:pmid/&rfr_iscdi=true |