Loading…
Sentinel-2 Sharpening Using a Single Unsupervised Convolutional Neural Network With MTF-Based Degradation Model
The Sentinel-2 (S2) constellation provides multispectral images at 10 m, 20 m, and 60 m resolution bands. Obtaining all bands at 10 m resolution would benefit many applications. Recently, many model-based and deep learning (DL)-based sharpening methods have been proposed. However, the downside of th...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.6882-6896 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Sentinel-2 (S2) constellation provides multispectral images at 10 m, 20 m, and 60 m resolution bands. Obtaining all bands at 10 m resolution would benefit many applications. Recently, many model-based and deep learning (DL)-based sharpening methods have been proposed. However, the downside of those methods is that the DL-based methods need to be trained separately for the 20 m and the 60 m bands in a supervised manner at reduced resolution, while the model-based methods heavily depend on the hand-crafted image priors. To break the gap, this article proposes a novel unsupervised DL-based S2 sharpening method using a single convolutional neural network (CNN) to sharpen the 20 and 60 m bands at the same time at full resolution. The proposed method replaces the hand-crafted image prior by the deep image prior (DIP) provided by a CNN structure whose parameters are easily optimized using a DL optimizer. We also incorporate the modulation transfer function-based degradation model as a network layer, and add all bands to both network input and output. This setting improves the DIP and exploits the advantage of multitask learning since all S2 bands are highly correlated. Extensive experiments with real S2 data show that our proposed method outperforms competitive methods for reduced-resolution evaluation and yields very high quality sharpened image for full-resolution evaluation. |
---|---|
ISSN: | 1939-1404 2151-1535 |
DOI: | 10.1109/JSTARS.2021.3092286 |