Loading…
Text-Based Twitter User Geolocation Prediction
Geographical location is vital to geospatial applications like local search and event detection. In this paper, we investigate and improve on the task of text-based geolocation prediction of Twitter users. Previous studies on this topic have typically assumed that geographical references (e.g., gaze...
Saved in:
Published in: | The Journal of artificial intelligence research 2014-01, Vol.49, p.451-500 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Geographical location is vital to geospatial applications like local search and event detection. In this paper, we investigate and improve on the task of text-based geolocation prediction of Twitter users. Previous studies on this topic have typically assumed that geographical references (e.g., gazetteer terms, dialectal words) in a text are indicative of its authors location. However, these references are often buried in informal, ungrammatical, and multilingual data, and are therefore non-trivial to identify and exploit. We present an integrated geolocation prediction framework and investigate what factors impact on prediction accuracy. First, we evaluate a range of feature selection methods to obtain location indicative words. We then evaluate the impact of non-geotagged tweets, language, and user-declared metadata on geolocation prediction. In addition, we evaluate the impact of temporal variance on model generalisation, and discuss how users differ in terms of their geolocatability.
We achieve state-of-the-art results for the text-based Twitter user geolocation task, and also provide the most extensive exploration of the task to date. Our findings provide valuable insights into the design of robust, practical text-based geolocation prediction systems. |
---|---|
ISSN: | 1076-9757 1076-9757 1943-5037 |
DOI: | 10.1613/jair.4200 |