Loading…
Properties of Bethe Free Energies and Message Passing in Gaussian Models
We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on...
Saved in:
Published in: | The Journal of artificial intelligence research 2011-01, Vol.41, p.1-24 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 24 |
container_issue | |
container_start_page | 1 |
container_title | The Journal of artificial intelligence research |
container_volume | 41 |
creator | Cseke, B. Heskes, T. |
description | We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below. It turns out that the condition is identical to the pairwise normalizability condition, which is known to be a sufficient condition for the convergence of the message passing algorithm. We show that stable fixed points of the Gaussian message passing algorithm are local minima of the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating that the unboundedness of the free energy implies the divergence of the message passing algorithm. |
doi_str_mv | 10.1613/jair.3195 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554106674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554106674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-9ae1eebd8ec47d031b05adc7a117aa70e546dd6be117eb8fcb48c7bba208d37e3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqVw4A0sceKQ4k3sODlC1R-kVvQAZ2sdb0KikgQ7PfD2JCoHTjs7Gs1IH2P3IBaQQvLUYO0XCeTqgs1A6DTKtdKX__Q1uwmhEQJyGWcztj34ric_1BR4V_IXGj6Jrz0RX7Xkq8nG1vE9hYAV8QOGULcVr1u-wdOoseX7ztEx3LKrEo-B7v7unH2sV-_LbbR727wun3dREYMeohwJiKzLqJDaiQSsUOgKjQAaUQtSMnUutTT-ZLOysDIrtLUYi8wlmpI5ezj39r77PlEYTNOdfDtOmlgpCSJNtRxTj-dU4bsQPJWm9_UX-h8DwkygzATKTKCSX3ihW_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554106674</pqid></control><display><type>article</type><title>Properties of Bethe Free Energies and Message Passing in Gaussian Models</title><source>Publicly Available Content Database</source><creator>Cseke, B. ; Heskes, T.</creator><creatorcontrib>Cseke, B. ; Heskes, T.</creatorcontrib><description>We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below. It turns out that the condition is identical to the pairwise normalizability condition, which is known to be a sufficient condition for the convergence of the message passing algorithm. We show that stable fixed points of the Gaussian message passing algorithm are local minima of the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating that the unboundedness of the free energy implies the divergence of the message passing algorithm.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.3195</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Algorithms ; Artificial intelligence ; Divergence ; Free energy ; Lower bounds ; Message passing ; Normal distribution ; Probabilistic models ; Upper bounds</subject><ispartof>The Journal of artificial intelligence research, 2011-01, Vol.41, p.1-24</ispartof><rights>2011. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2554106674?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cseke, B.</creatorcontrib><creatorcontrib>Heskes, T.</creatorcontrib><title>Properties of Bethe Free Energies and Message Passing in Gaussian Models</title><title>The Journal of artificial intelligence research</title><description>We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below. It turns out that the condition is identical to the pairwise normalizability condition, which is known to be a sufficient condition for the convergence of the message passing algorithm. We show that stable fixed points of the Gaussian message passing algorithm are local minima of the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating that the unboundedness of the free energy implies the divergence of the message passing algorithm.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Divergence</subject><subject>Free energy</subject><subject>Lower bounds</subject><subject>Message passing</subject><subject>Normal distribution</subject><subject>Probabilistic models</subject><subject>Upper bounds</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkM1OwzAQhC0EEqVw4A0sceKQ4k3sODlC1R-kVvQAZ2sdb0KikgQ7PfD2JCoHTjs7Gs1IH2P3IBaQQvLUYO0XCeTqgs1A6DTKtdKX__Q1uwmhEQJyGWcztj34ric_1BR4V_IXGj6Jrz0RX7Xkq8nG1vE9hYAV8QOGULcVr1u-wdOoseX7ztEx3LKrEo-B7v7unH2sV-_LbbR727wun3dREYMeohwJiKzLqJDaiQSsUOgKjQAaUQtSMnUutTT-ZLOysDIrtLUYi8wlmpI5ezj39r77PlEYTNOdfDtOmlgpCSJNtRxTj-dU4bsQPJWm9_UX-h8DwkygzATKTKCSX3ihW_M</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Cseke, B.</creator><creator>Heskes, T.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110101</creationdate><title>Properties of Bethe Free Energies and Message Passing in Gaussian Models</title><author>Cseke, B. ; Heskes, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-9ae1eebd8ec47d031b05adc7a117aa70e546dd6be117eb8fcb48c7bba208d37e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Divergence</topic><topic>Free energy</topic><topic>Lower bounds</topic><topic>Message passing</topic><topic>Normal distribution</topic><topic>Probabilistic models</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cseke, B.</creatorcontrib><creatorcontrib>Heskes, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cseke, B.</au><au>Heskes, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of Bethe Free Energies and Message Passing in Gaussian Models</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>41</volume><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below. It turns out that the condition is identical to the pairwise normalizability condition, which is known to be a sufficient condition for the convergence of the message passing algorithm. We show that stable fixed points of the Gaussian message passing algorithm are local minima of the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating that the unboundedness of the free energy implies the divergence of the message passing algorithm.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.3195</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2011-01, Vol.41, p.1-24 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554106674 |
source | Publicly Available Content Database |
subjects | Algorithms Artificial intelligence Divergence Free energy Lower bounds Message passing Normal distribution Probabilistic models Upper bounds |
title | Properties of Bethe Free Energies and Message Passing in Gaussian Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20Bethe%20Free%20Energies%20and%20Message%20Passing%20in%20Gaussian%20Models&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Cseke,%20B.&rft.date=2011-01-01&rft.volume=41&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.3195&rft_dat=%3Cproquest_cross%3E2554106674%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-9ae1eebd8ec47d031b05adc7a117aa70e546dd6be117eb8fcb48c7bba208d37e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554106674&rft_id=info:pmid/&rfr_iscdi=true |