Loading…

Properties of Bethe Free Energies and Message Passing in Gaussian Models

We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of artificial intelligence research 2011-01, Vol.41, p.1-24
Main Authors: Cseke, B., Heskes, T.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 24
container_issue
container_start_page 1
container_title The Journal of artificial intelligence research
container_volume 41
creator Cseke, B.
Heskes, T.
description We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below. It turns out that the condition is identical to the pairwise normalizability condition, which is known to be a sufficient condition for the convergence of the message passing algorithm. We show that stable fixed points of the Gaussian message passing algorithm are local minima of the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating that the unboundedness of the free energy implies the divergence of the message passing algorithm.
doi_str_mv 10.1613/jair.3195
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554106674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554106674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-9ae1eebd8ec47d031b05adc7a117aa70e546dd6be117eb8fcb48c7bba208d37e3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqVw4A0sceKQ4k3sODlC1R-kVvQAZ2sdb0KikgQ7PfD2JCoHTjs7Gs1IH2P3IBaQQvLUYO0XCeTqgs1A6DTKtdKX__Q1uwmhEQJyGWcztj34ric_1BR4V_IXGj6Jrz0RX7Xkq8nG1vE9hYAV8QOGULcVr1u-wdOoseX7ztEx3LKrEo-B7v7unH2sV-_LbbR727wun3dREYMeohwJiKzLqJDaiQSsUOgKjQAaUQtSMnUutTT-ZLOysDIrtLUYi8wlmpI5ezj39r77PlEYTNOdfDtOmlgpCSJNtRxTj-dU4bsQPJWm9_UX-h8DwkygzATKTKCSX3ihW_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554106674</pqid></control><display><type>article</type><title>Properties of Bethe Free Energies and Message Passing in Gaussian Models</title><source>Publicly Available Content Database</source><creator>Cseke, B. ; Heskes, T.</creator><creatorcontrib>Cseke, B. ; Heskes, T.</creatorcontrib><description>We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below. It turns out that the condition is identical to the pairwise normalizability condition, which is known to be a sufficient condition for the convergence of the message passing algorithm. We show that stable fixed points of the Gaussian message passing algorithm are local minima of the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating that the unboundedness of the free energy implies the divergence of the message passing algorithm.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.3195</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Algorithms ; Artificial intelligence ; Divergence ; Free energy ; Lower bounds ; Message passing ; Normal distribution ; Probabilistic models ; Upper bounds</subject><ispartof>The Journal of artificial intelligence research, 2011-01, Vol.41, p.1-24</ispartof><rights>2011. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2554106674?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cseke, B.</creatorcontrib><creatorcontrib>Heskes, T.</creatorcontrib><title>Properties of Bethe Free Energies and Message Passing in Gaussian Models</title><title>The Journal of artificial intelligence research</title><description>We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below. It turns out that the condition is identical to the pairwise normalizability condition, which is known to be a sufficient condition for the convergence of the message passing algorithm. We show that stable fixed points of the Gaussian message passing algorithm are local minima of the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating that the unboundedness of the free energy implies the divergence of the message passing algorithm.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Divergence</subject><subject>Free energy</subject><subject>Lower bounds</subject><subject>Message passing</subject><subject>Normal distribution</subject><subject>Probabilistic models</subject><subject>Upper bounds</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkM1OwzAQhC0EEqVw4A0sceKQ4k3sODlC1R-kVvQAZ2sdb0KikgQ7PfD2JCoHTjs7Gs1IH2P3IBaQQvLUYO0XCeTqgs1A6DTKtdKX__Q1uwmhEQJyGWcztj34ric_1BR4V_IXGj6Jrz0RX7Xkq8nG1vE9hYAV8QOGULcVr1u-wdOoseX7ztEx3LKrEo-B7v7unH2sV-_LbbR727wun3dREYMeohwJiKzLqJDaiQSsUOgKjQAaUQtSMnUutTT-ZLOysDIrtLUYi8wlmpI5ezj39r77PlEYTNOdfDtOmlgpCSJNtRxTj-dU4bsQPJWm9_UX-h8DwkygzATKTKCSX3ihW_M</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Cseke, B.</creator><creator>Heskes, T.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110101</creationdate><title>Properties of Bethe Free Energies and Message Passing in Gaussian Models</title><author>Cseke, B. ; Heskes, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-9ae1eebd8ec47d031b05adc7a117aa70e546dd6be117eb8fcb48c7bba208d37e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Divergence</topic><topic>Free energy</topic><topic>Lower bounds</topic><topic>Message passing</topic><topic>Normal distribution</topic><topic>Probabilistic models</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cseke, B.</creatorcontrib><creatorcontrib>Heskes, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cseke, B.</au><au>Heskes, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of Bethe Free Energies and Message Passing in Gaussian Models</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>41</volume><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below. It turns out that the condition is identical to the pairwise normalizability condition, which is known to be a sufficient condition for the convergence of the message passing algorithm. We show that stable fixed points of the Gaussian message passing algorithm are local minima of the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating that the unboundedness of the free energy implies the divergence of the message passing algorithm.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.3195</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-9757
ispartof The Journal of artificial intelligence research, 2011-01, Vol.41, p.1-24
issn 1076-9757
1076-9757
1943-5037
language eng
recordid cdi_proquest_journals_2554106674
source Publicly Available Content Database
subjects Algorithms
Artificial intelligence
Divergence
Free energy
Lower bounds
Message passing
Normal distribution
Probabilistic models
Upper bounds
title Properties of Bethe Free Energies and Message Passing in Gaussian Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20Bethe%20Free%20Energies%20and%20Message%20Passing%20in%20Gaussian%20Models&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Cseke,%20B.&rft.date=2011-01-01&rft.volume=41&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.3195&rft_dat=%3Cproquest_cross%3E2554106674%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-9ae1eebd8ec47d031b05adc7a117aa70e546dd6be117eb8fcb48c7bba208d37e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554106674&rft_id=info:pmid/&rfr_iscdi=true