Loading…
Planning with Durative Actions in Stochastic Domains
Probabilistic planning problems are typically modeled as a Markov Decision Process (MDP). MDPs, while an otherwise expressive model, allow only for sequential, non-durative actions. This poses severe restrictions in modeling and solving a real world planning problem. We extend the MDP model to incor...
Saved in:
Published in: | The Journal of artificial intelligence research 2008-01, Vol.31, p.33-82 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c257t-1c9ad76a16a8f51f09a703e30a632eef4e6d6c520e52dc7c63e050f791c16b83 |
---|---|
cites | |
container_end_page | 82 |
container_issue | |
container_start_page | 33 |
container_title | The Journal of artificial intelligence research |
container_volume | 31 |
creator | Mausam Weld, D. S. |
description | Probabilistic planning problems are typically modeled as a Markov Decision Process (MDP). MDPs, while an otherwise expressive model, allow only for sequential, non-durative actions. This poses severe restrictions in modeling and solving a real world planning problem. We extend the MDP model to incorporate 1) simultaneous action execution, 2) durative actions, and 3) stochastic durations. We develop several algorithms to combat the computational explosion introduced by these features. The key theoretical ideas used in building these algorithms are -- modeling a complex problem as an MDP in extended state/action space, pruning of irrelevant actions, sampling of relevant actions, using informed heuristics to guide the search, hybridizing different planners to achieve benefits of both, approximating the problem and replanning. Our empirical evaluation illuminates the different merits in using various algorithms, viz., optimality, empirical closeness to optimality, theoretical error bounds, and speed. |
doi_str_mv | 10.1613/jair.2269 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554116476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554116476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-1c9ad76a16a8f51f09a703e30a632eef4e6d6c520e52dc7c63e050f791c16b83</originalsourceid><addsrcrecordid>eNpNkM1KAzEYRYMoWKsL32DAlYup-ZJJMlmW1j8oKNh9iJnEZmiTmmQU394OdeHq3sXhXjgIXQOeAQd612ufZoRweYImgAWvpWDi9F8_Rxc59xiDbEg7Qc3rVofgw0f17cumWg5JF_9lq7kpPoZc-VC9lWg2OhdvqmXcaR_yJTpzepvt1V9O0frhfr14qlcvj8-L-ao2hIlSg5G6E1wD161j4LDUAlNLseaUWOsayztuGMGWkc4Iw6nFDDshwQB_b-kU3Rxn9yl-DjYX1cchhcOjIow1ALwR_EDdHimTYs7JOrVPfqfTjwKsRidqdKJGJ_QXElZTmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554116476</pqid></control><display><type>article</type><title>Planning with Durative Actions in Stochastic Domains</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mausam ; Weld, D. S.</creator><creatorcontrib>Mausam ; Weld, D. S.</creatorcontrib><description>Probabilistic planning problems are typically modeled as a Markov Decision Process (MDP). MDPs, while an otherwise expressive model, allow only for sequential, non-durative actions. This poses severe restrictions in modeling and solving a real world planning problem. We extend the MDP model to incorporate 1) simultaneous action execution, 2) durative actions, and 3) stochastic durations. We develop several algorithms to combat the computational explosion introduced by these features. The key theoretical ideas used in building these algorithms are -- modeling a complex problem as an MDP in extended state/action space, pruning of irrelevant actions, sampling of relevant actions, using informed heuristics to guide the search, hybridizing different planners to achieve benefits of both, approximating the problem and replanning. Our empirical evaluation illuminates the different merits in using various algorithms, viz., optimality, empirical closeness to optimality, theoretical error bounds, and speed.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.2269</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Algorithms ; Artificial intelligence ; Markov processes ; Planning</subject><ispartof>The Journal of artificial intelligence research, 2008-01, Vol.31, p.33-82</ispartof><rights>2008. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-1c9ad76a16a8f51f09a703e30a632eef4e6d6c520e52dc7c63e050f791c16b83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2554116476?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Mausam</creatorcontrib><creatorcontrib>Weld, D. S.</creatorcontrib><title>Planning with Durative Actions in Stochastic Domains</title><title>The Journal of artificial intelligence research</title><description>Probabilistic planning problems are typically modeled as a Markov Decision Process (MDP). MDPs, while an otherwise expressive model, allow only for sequential, non-durative actions. This poses severe restrictions in modeling and solving a real world planning problem. We extend the MDP model to incorporate 1) simultaneous action execution, 2) durative actions, and 3) stochastic durations. We develop several algorithms to combat the computational explosion introduced by these features. The key theoretical ideas used in building these algorithms are -- modeling a complex problem as an MDP in extended state/action space, pruning of irrelevant actions, sampling of relevant actions, using informed heuristics to guide the search, hybridizing different planners to achieve benefits of both, approximating the problem and replanning. Our empirical evaluation illuminates the different merits in using various algorithms, viz., optimality, empirical closeness to optimality, theoretical error bounds, and speed.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Markov processes</subject><subject>Planning</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkM1KAzEYRYMoWKsL32DAlYup-ZJJMlmW1j8oKNh9iJnEZmiTmmQU394OdeHq3sXhXjgIXQOeAQd612ufZoRweYImgAWvpWDi9F8_Rxc59xiDbEg7Qc3rVofgw0f17cumWg5JF_9lq7kpPoZc-VC9lWg2OhdvqmXcaR_yJTpzepvt1V9O0frhfr14qlcvj8-L-ao2hIlSg5G6E1wD161j4LDUAlNLseaUWOsayztuGMGWkc4Iw6nFDDshwQB_b-kU3Rxn9yl-DjYX1cchhcOjIow1ALwR_EDdHimTYs7JOrVPfqfTjwKsRidqdKJGJ_QXElZTmw</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Mausam</creator><creator>Weld, D. S.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20080101</creationdate><title>Planning with Durative Actions in Stochastic Domains</title><author>Mausam ; Weld, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-1c9ad76a16a8f51f09a703e30a632eef4e6d6c520e52dc7c63e050f791c16b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Markov processes</topic><topic>Planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mausam</creatorcontrib><creatorcontrib>Weld, D. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mausam</au><au>Weld, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planning with Durative Actions in Stochastic Domains</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>31</volume><spage>33</spage><epage>82</epage><pages>33-82</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>Probabilistic planning problems are typically modeled as a Markov Decision Process (MDP). MDPs, while an otherwise expressive model, allow only for sequential, non-durative actions. This poses severe restrictions in modeling and solving a real world planning problem. We extend the MDP model to incorporate 1) simultaneous action execution, 2) durative actions, and 3) stochastic durations. We develop several algorithms to combat the computational explosion introduced by these features. The key theoretical ideas used in building these algorithms are -- modeling a complex problem as an MDP in extended state/action space, pruning of irrelevant actions, sampling of relevant actions, using informed heuristics to guide the search, hybridizing different planners to achieve benefits of both, approximating the problem and replanning. Our empirical evaluation illuminates the different merits in using various algorithms, viz., optimality, empirical closeness to optimality, theoretical error bounds, and speed.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.2269</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2008-01, Vol.31, p.33-82 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554116476 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Artificial intelligence Markov processes Planning |
title | Planning with Durative Actions in Stochastic Domains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planning%20with%20Durative%20Actions%20in%20Stochastic%20Domains&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Mausam&rft.date=2008-01-01&rft.volume=31&rft.spage=33&rft.epage=82&rft.pages=33-82&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.2269&rft_dat=%3Cproquest_cross%3E2554116476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-1c9ad76a16a8f51f09a703e30a632eef4e6d6c520e52dc7c63e050f791c16b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554116476&rft_id=info:pmid/&rfr_iscdi=true |