Loading…
Novel Applications of Technology for Advancing Tidal Marsh Ecology
Over the last 20 years, innovations have led to the development of exciting new technologies and novel applications of established technologies, collectively increasing the scale, scope, and quality of research possible in tidal marsh systems. Thus, ecological research on marshes is being revolution...
Saved in:
Published in: | Estuaries and coasts 2021-09, Vol.44 (6), p.1568-1578 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-32b851820eb56ebf75de0b743e236294149e205f54d69aeefad9676a63c208133 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-32b851820eb56ebf75de0b743e236294149e205f54d69aeefad9676a63c208133 |
container_end_page | 1578 |
container_issue | 6 |
container_start_page | 1568 |
container_title | Estuaries and coasts |
container_volume | 44 |
creator | Kimball, Matthew E. Connolly, Rod M. Alford, Scott B. Colombano, Denise D. James, W. Ryan Kenworthy, Matthew D. Norris, Gregory S. Ollerhead, Jeff Ramsden, Sarah Rehage, Jennifer S. Sparks, Eric L. Waltham, Nathan J. Worthington, Thomas A. Taylor, Matthew D. |
description | Over the last 20 years, innovations have led to the development of exciting new technologies and novel applications of established technologies, collectively increasing the scale, scope, and quality of research possible in tidal marsh systems. Thus, ecological research on marshes is being revolutionized, in the same way as ecological research more generally, by the availability of new tools and analytical techniques. This perspective highlights current and potential applications of novel research technologies for marsh ecology. These are summarized under several themes: (1.) imagery — sophisticated imaging sensors mounted on satellites, drones, and underwater vehicles; (2.) animal tracking — acoustic telemetry, passive integrated transponder (PIT) tags, and satellite tracking, and (3.) biotracers — investigation of energy pathways and food web structure using chemical tracers such as compound-specific stable isotopes, isotope addition experiments, contaminant analysis, and eDNA. While the adoption of these technological advances has greatly enhanced our ability to examine contemporary questions in tidal marsh ecology, these applications also create significant challenges with the accessibility, processing, and synthesis of the large amounts of data generated. Implementation of open science practices has allowed for greater access to data. Newly available machine learning algorithms have been widely applied to resolve the challenge of detecting patterns in massive environmental datasets. The potential integration on digital platforms of multiple, large data streams measuring physical and biological components of tidal marsh ecosystems is an opportunity to advance science support for management responses needed in a rapidly changing coastal landscape. |
doi_str_mv | 10.1007/s12237-021-00939-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554137429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554137429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-32b851820eb56ebf75de0b743e236294149e205f54d69aeefad9676a63c208133</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMRvsazupx1KVh1RgCbPlOHabKsTB7kP994QGwcZ0z_Cdc6UPoWtGbxml-V1iADwnFBihVHFF9idoxKRUBHLOTn8z8HN0kdKaUiElFSN0_xp2rsHTrmtqazZ1aBMOHhfOrtrQhOUB-xDxtNqZ1tbtEhd1ZRr8YmJa4bk9EpfozJsmuaufO0bvD_Ni9kQWb4_Ps-mCWM7UhnAoJ5JNgLpSZq70uawcLXPBHfAMlGBCOaDSS1FlyjjnTaWyPDMZt0AnjPMxuhl2uxg-ty5t9DpsY9u_1CClYDwXoHoKBsrGkFJ0Xnex_jDxoBnV36704Er3rvTRld73JT6UUg-3Sxf_pv9pfQFrL2uG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554137429</pqid></control><display><type>article</type><title>Novel Applications of Technology for Advancing Tidal Marsh Ecology</title><source>Springer Nature</source><creator>Kimball, Matthew E. ; Connolly, Rod M. ; Alford, Scott B. ; Colombano, Denise D. ; James, W. Ryan ; Kenworthy, Matthew D. ; Norris, Gregory S. ; Ollerhead, Jeff ; Ramsden, Sarah ; Rehage, Jennifer S. ; Sparks, Eric L. ; Waltham, Nathan J. ; Worthington, Thomas A. ; Taylor, Matthew D.</creator><creatorcontrib>Kimball, Matthew E. ; Connolly, Rod M. ; Alford, Scott B. ; Colombano, Denise D. ; James, W. Ryan ; Kenworthy, Matthew D. ; Norris, Gregory S. ; Ollerhead, Jeff ; Ramsden, Sarah ; Rehage, Jennifer S. ; Sparks, Eric L. ; Waltham, Nathan J. ; Worthington, Thomas A. ; Taylor, Matthew D.</creatorcontrib><description>Over the last 20 years, innovations have led to the development of exciting new technologies and novel applications of established technologies, collectively increasing the scale, scope, and quality of research possible in tidal marsh systems. Thus, ecological research on marshes is being revolutionized, in the same way as ecological research more generally, by the availability of new tools and analytical techniques. This perspective highlights current and potential applications of novel research technologies for marsh ecology. These are summarized under several themes: (1.) imagery — sophisticated imaging sensors mounted on satellites, drones, and underwater vehicles; (2.) animal tracking — acoustic telemetry, passive integrated transponder (PIT) tags, and satellite tracking, and (3.) biotracers — investigation of energy pathways and food web structure using chemical tracers such as compound-specific stable isotopes, isotope addition experiments, contaminant analysis, and eDNA. While the adoption of these technological advances has greatly enhanced our ability to examine contemporary questions in tidal marsh ecology, these applications also create significant challenges with the accessibility, processing, and synthesis of the large amounts of data generated. Implementation of open science practices has allowed for greater access to data. Newly available machine learning algorithms have been widely applied to resolve the challenge of detecting patterns in massive environmental datasets. The potential integration on digital platforms of multiple, large data streams measuring physical and biological components of tidal marsh ecosystems is an opportunity to advance science support for management responses needed in a rapidly changing coastal landscape.</description><identifier>ISSN: 1559-2723</identifier><identifier>EISSN: 1559-2731</identifier><identifier>DOI: 10.1007/s12237-021-00939-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustic telemetry ; Acoustic tracking ; Algorithms ; Analytical methods ; Coastal Sciences ; Contaminants ; Data transmission ; Drone vehicles ; Earth and Environmental Science ; Ecological research ; Ecology ; Environment ; Environmental DNA ; Environmental Management ; Food chains ; Food webs ; Freshwater & Marine Ecology ; Imagery ; Isotopes ; Learning algorithms ; Machine learning ; New technology ; Satellite imagery ; Satellite tracking ; Satellites ; Special Issue: Concepts and Controversies in Tidal Marsh Ecology Revisited ; Stable isotopes ; Strategic management ; Telemetry ; Tidal marshes ; Tracers ; Transponders ; Underwater acoustics ; Underwater vehicles ; Water and Health ; Wetlands ; Work platforms</subject><ispartof>Estuaries and coasts, 2021-09, Vol.44 (6), p.1568-1578</ispartof><rights>Coastal and Estuarine Research Federation 2021</rights><rights>Coastal and Estuarine Research Federation 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-32b851820eb56ebf75de0b743e236294149e205f54d69aeefad9676a63c208133</citedby><cites>FETCH-LOGICAL-c319t-32b851820eb56ebf75de0b743e236294149e205f54d69aeefad9676a63c208133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kimball, Matthew E.</creatorcontrib><creatorcontrib>Connolly, Rod M.</creatorcontrib><creatorcontrib>Alford, Scott B.</creatorcontrib><creatorcontrib>Colombano, Denise D.</creatorcontrib><creatorcontrib>James, W. Ryan</creatorcontrib><creatorcontrib>Kenworthy, Matthew D.</creatorcontrib><creatorcontrib>Norris, Gregory S.</creatorcontrib><creatorcontrib>Ollerhead, Jeff</creatorcontrib><creatorcontrib>Ramsden, Sarah</creatorcontrib><creatorcontrib>Rehage, Jennifer S.</creatorcontrib><creatorcontrib>Sparks, Eric L.</creatorcontrib><creatorcontrib>Waltham, Nathan J.</creatorcontrib><creatorcontrib>Worthington, Thomas A.</creatorcontrib><creatorcontrib>Taylor, Matthew D.</creatorcontrib><title>Novel Applications of Technology for Advancing Tidal Marsh Ecology</title><title>Estuaries and coasts</title><addtitle>Estuaries and Coasts</addtitle><description>Over the last 20 years, innovations have led to the development of exciting new technologies and novel applications of established technologies, collectively increasing the scale, scope, and quality of research possible in tidal marsh systems. Thus, ecological research on marshes is being revolutionized, in the same way as ecological research more generally, by the availability of new tools and analytical techniques. This perspective highlights current and potential applications of novel research technologies for marsh ecology. These are summarized under several themes: (1.) imagery — sophisticated imaging sensors mounted on satellites, drones, and underwater vehicles; (2.) animal tracking — acoustic telemetry, passive integrated transponder (PIT) tags, and satellite tracking, and (3.) biotracers — investigation of energy pathways and food web structure using chemical tracers such as compound-specific stable isotopes, isotope addition experiments, contaminant analysis, and eDNA. While the adoption of these technological advances has greatly enhanced our ability to examine contemporary questions in tidal marsh ecology, these applications also create significant challenges with the accessibility, processing, and synthesis of the large amounts of data generated. Implementation of open science practices has allowed for greater access to data. Newly available machine learning algorithms have been widely applied to resolve the challenge of detecting patterns in massive environmental datasets. The potential integration on digital platforms of multiple, large data streams measuring physical and biological components of tidal marsh ecosystems is an opportunity to advance science support for management responses needed in a rapidly changing coastal landscape.</description><subject>Acoustic telemetry</subject><subject>Acoustic tracking</subject><subject>Algorithms</subject><subject>Analytical methods</subject><subject>Coastal Sciences</subject><subject>Contaminants</subject><subject>Data transmission</subject><subject>Drone vehicles</subject><subject>Earth and Environmental Science</subject><subject>Ecological research</subject><subject>Ecology</subject><subject>Environment</subject><subject>Environmental DNA</subject><subject>Environmental Management</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Freshwater & Marine Ecology</subject><subject>Imagery</subject><subject>Isotopes</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>New technology</subject><subject>Satellite imagery</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Special Issue: Concepts and Controversies in Tidal Marsh Ecology Revisited</subject><subject>Stable isotopes</subject><subject>Strategic management</subject><subject>Telemetry</subject><subject>Tidal marshes</subject><subject>Tracers</subject><subject>Transponders</subject><subject>Underwater acoustics</subject><subject>Underwater vehicles</subject><subject>Water and Health</subject><subject>Wetlands</subject><subject>Work platforms</subject><issn>1559-2723</issn><issn>1559-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMRvsazupx1KVh1RgCbPlOHabKsTB7kP994QGwcZ0z_Cdc6UPoWtGbxml-V1iADwnFBihVHFF9idoxKRUBHLOTn8z8HN0kdKaUiElFSN0_xp2rsHTrmtqazZ1aBMOHhfOrtrQhOUB-xDxtNqZ1tbtEhd1ZRr8YmJa4bk9EpfozJsmuaufO0bvD_Ni9kQWb4_Ps-mCWM7UhnAoJ5JNgLpSZq70uawcLXPBHfAMlGBCOaDSS1FlyjjnTaWyPDMZt0AnjPMxuhl2uxg-ty5t9DpsY9u_1CClYDwXoHoKBsrGkFJ0Xnex_jDxoBnV36704Er3rvTRld73JT6UUg-3Sxf_pv9pfQFrL2uG</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Kimball, Matthew E.</creator><creator>Connolly, Rod M.</creator><creator>Alford, Scott B.</creator><creator>Colombano, Denise D.</creator><creator>James, W. Ryan</creator><creator>Kenworthy, Matthew D.</creator><creator>Norris, Gregory S.</creator><creator>Ollerhead, Jeff</creator><creator>Ramsden, Sarah</creator><creator>Rehage, Jennifer S.</creator><creator>Sparks, Eric L.</creator><creator>Waltham, Nathan J.</creator><creator>Worthington, Thomas A.</creator><creator>Taylor, Matthew D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>8AO</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>Novel Applications of Technology for Advancing Tidal Marsh Ecology</title><author>Kimball, Matthew E. ; Connolly, Rod M. ; Alford, Scott B. ; Colombano, Denise D. ; James, W. Ryan ; Kenworthy, Matthew D. ; Norris, Gregory S. ; Ollerhead, Jeff ; Ramsden, Sarah ; Rehage, Jennifer S. ; Sparks, Eric L. ; Waltham, Nathan J. ; Worthington, Thomas A. ; Taylor, Matthew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-32b851820eb56ebf75de0b743e236294149e205f54d69aeefad9676a63c208133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic telemetry</topic><topic>Acoustic tracking</topic><topic>Algorithms</topic><topic>Analytical methods</topic><topic>Coastal Sciences</topic><topic>Contaminants</topic><topic>Data transmission</topic><topic>Drone vehicles</topic><topic>Earth and Environmental Science</topic><topic>Ecological research</topic><topic>Ecology</topic><topic>Environment</topic><topic>Environmental DNA</topic><topic>Environmental Management</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Freshwater & Marine Ecology</topic><topic>Imagery</topic><topic>Isotopes</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>New technology</topic><topic>Satellite imagery</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Special Issue: Concepts and Controversies in Tidal Marsh Ecology Revisited</topic><topic>Stable isotopes</topic><topic>Strategic management</topic><topic>Telemetry</topic><topic>Tidal marshes</topic><topic>Tracers</topic><topic>Transponders</topic><topic>Underwater acoustics</topic><topic>Underwater vehicles</topic><topic>Water and Health</topic><topic>Wetlands</topic><topic>Work platforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimball, Matthew E.</creatorcontrib><creatorcontrib>Connolly, Rod M.</creatorcontrib><creatorcontrib>Alford, Scott B.</creatorcontrib><creatorcontrib>Colombano, Denise D.</creatorcontrib><creatorcontrib>James, W. Ryan</creatorcontrib><creatorcontrib>Kenworthy, Matthew D.</creatorcontrib><creatorcontrib>Norris, Gregory S.</creatorcontrib><creatorcontrib>Ollerhead, Jeff</creatorcontrib><creatorcontrib>Ramsden, Sarah</creatorcontrib><creatorcontrib>Rehage, Jennifer S.</creatorcontrib><creatorcontrib>Sparks, Eric L.</creatorcontrib><creatorcontrib>Waltham, Nathan J.</creatorcontrib><creatorcontrib>Worthington, Thomas A.</creatorcontrib><creatorcontrib>Taylor, Matthew D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Estuaries and coasts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimball, Matthew E.</au><au>Connolly, Rod M.</au><au>Alford, Scott B.</au><au>Colombano, Denise D.</au><au>James, W. Ryan</au><au>Kenworthy, Matthew D.</au><au>Norris, Gregory S.</au><au>Ollerhead, Jeff</au><au>Ramsden, Sarah</au><au>Rehage, Jennifer S.</au><au>Sparks, Eric L.</au><au>Waltham, Nathan J.</au><au>Worthington, Thomas A.</au><au>Taylor, Matthew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Applications of Technology for Advancing Tidal Marsh Ecology</atitle><jtitle>Estuaries and coasts</jtitle><stitle>Estuaries and Coasts</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>44</volume><issue>6</issue><spage>1568</spage><epage>1578</epage><pages>1568-1578</pages><issn>1559-2723</issn><eissn>1559-2731</eissn><abstract>Over the last 20 years, innovations have led to the development of exciting new technologies and novel applications of established technologies, collectively increasing the scale, scope, and quality of research possible in tidal marsh systems. Thus, ecological research on marshes is being revolutionized, in the same way as ecological research more generally, by the availability of new tools and analytical techniques. This perspective highlights current and potential applications of novel research technologies for marsh ecology. These are summarized under several themes: (1.) imagery — sophisticated imaging sensors mounted on satellites, drones, and underwater vehicles; (2.) animal tracking — acoustic telemetry, passive integrated transponder (PIT) tags, and satellite tracking, and (3.) biotracers — investigation of energy pathways and food web structure using chemical tracers such as compound-specific stable isotopes, isotope addition experiments, contaminant analysis, and eDNA. While the adoption of these technological advances has greatly enhanced our ability to examine contemporary questions in tidal marsh ecology, these applications also create significant challenges with the accessibility, processing, and synthesis of the large amounts of data generated. Implementation of open science practices has allowed for greater access to data. Newly available machine learning algorithms have been widely applied to resolve the challenge of detecting patterns in massive environmental datasets. The potential integration on digital platforms of multiple, large data streams measuring physical and biological components of tidal marsh ecosystems is an opportunity to advance science support for management responses needed in a rapidly changing coastal landscape.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12237-021-00939-w</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-2723 |
ispartof | Estuaries and coasts, 2021-09, Vol.44 (6), p.1568-1578 |
issn | 1559-2723 1559-2731 |
language | eng |
recordid | cdi_proquest_journals_2554137429 |
source | Springer Nature |
subjects | Acoustic telemetry Acoustic tracking Algorithms Analytical methods Coastal Sciences Contaminants Data transmission Drone vehicles Earth and Environmental Science Ecological research Ecology Environment Environmental DNA Environmental Management Food chains Food webs Freshwater & Marine Ecology Imagery Isotopes Learning algorithms Machine learning New technology Satellite imagery Satellite tracking Satellites Special Issue: Concepts and Controversies in Tidal Marsh Ecology Revisited Stable isotopes Strategic management Telemetry Tidal marshes Tracers Transponders Underwater acoustics Underwater vehicles Water and Health Wetlands Work platforms |
title | Novel Applications of Technology for Advancing Tidal Marsh Ecology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Applications%20of%20Technology%20for%20Advancing%20Tidal%20Marsh%20Ecology&rft.jtitle=Estuaries%20and%20coasts&rft.au=Kimball,%20Matthew%20E.&rft.date=2021-09-01&rft.volume=44&rft.issue=6&rft.spage=1568&rft.epage=1578&rft.pages=1568-1578&rft.issn=1559-2723&rft.eissn=1559-2731&rft_id=info:doi/10.1007/s12237-021-00939-w&rft_dat=%3Cproquest_cross%3E2554137429%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-32b851820eb56ebf75de0b743e236294149e205f54d69aeefad9676a63c208133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554137429&rft_id=info:pmid/&rfr_iscdi=true |