Loading…

Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects

The final stage in the life history of prehistoric pottery prior to archaeological recovery is usually the longest, and frequently the most dynamic. The remains of archaeological ceramics spend hundreds to thousands of years deposited within the upper layers of the earth’s crust where they encounter...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2021-07, Vol.11 (7), p.749
Main Authors: Gilstrap, William D., Meanwell, Jennifer L., Paris, Elizabeth H., López Bravo, Roberto, Day, Peter M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c298t-481ead84ce97a18cc102ccd740eac07bcc48e561a6aaf4079be41ab0b6c3d9093
cites cdi_FETCH-LOGICAL-c298t-481ead84ce97a18cc102ccd740eac07bcc48e561a6aaf4079be41ab0b6c3d9093
container_end_page
container_issue 7
container_start_page 749
container_title Minerals (Basel)
container_volume 11
creator Gilstrap, William D.
Meanwell, Jennifer L.
Paris, Elizabeth H.
López Bravo, Roberto
Day, Peter M.
description The final stage in the life history of prehistoric pottery prior to archaeological recovery is usually the longest, and frequently the most dynamic. The remains of archaeological ceramics spend hundreds to thousands of years deposited within the upper layers of the earth’s crust where they encounter the same diagenetic environmental processes as the surrounding natural materials. Harsh conditions of subterranean environments induce physical stresses and chemical reactions, causing alterations of ceramic structure and composition. This is especially true of carbonate-rich ceramics, as carbonate phases are soluble when deposited within acidic environments. This paper examines common carbonate depletion and accretion effects of post-depositional environments on ancient ceramics from two rather different geological and archaeological contexts: Mesoamerica and the Mediterranean. Potters in both regions produce vessels with carbonate-rich materials—clays, calcite, limestone—that alter due to long exposure to low-pH sediments and continual water table fluctuations. Ceramic petrography is employed to identify traces of carbonate alterations within ceramic microstructure and to characterize fabrics. Elemental compositions of the same sherds are characterized through either scanning electron microscopy coupled with energy-dispersive spectrometry (SEM-EDS), inductively coupled plasma mass spectrometry and optical emission spectrometry (ICP-MS/OES) or neutron activation analysis (NAA). This method enabled comparison of the differing effects of post-depositional alteration of carbonate phases on bulk composition signatures commonly used to determine provenance.
doi_str_mv 10.3390/min11070749
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554615340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554615340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-481ead84ce97a18cc102ccd740eac07bcc48e561a6aaf4079be41ab0b6c3d9093</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUnfsASRxSwY-dhblUoD6kSFQKJW-RsNtRVEhfbPfTvcSmH7mX2MTPSDiHXnN0Jodj9YEbOWcEKqc7IJGVFlvBcfJ2f9Jdk5v2GxVJclFk6IfuV9SF5xK31Jhg76p7O-4BOHwZqO1rpHsxuiOiaeA5IV2vt0VMz0rmDtUbb228DUVhF2WDAP9Do1-Ofgx5b-o6t8cGZZve3WnQdQvBX5KLTvcfZP07J59Pio3pJlm_Pr9V8mUCqypDIkqNuSwmoCs1LAM5SgLaQDDWwogGQJWY517nWnWSFalBy3bAmB9EqpsSU3Bx9t87-7NCHemN3Lj7q6zTLZM4zIVlk3R5Z4Kz3Drt668yg3b7mrD7EW5_EK34BoFxvlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554615340</pqid></control><display><type>article</type><title>Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects</title><source>ABI/INFORM Global</source><source>Publicly Available Content (ProQuest)</source><creator>Gilstrap, William D. ; Meanwell, Jennifer L. ; Paris, Elizabeth H. ; López Bravo, Roberto ; Day, Peter M.</creator><creatorcontrib>Gilstrap, William D. ; Meanwell, Jennifer L. ; Paris, Elizabeth H. ; López Bravo, Roberto ; Day, Peter M.</creatorcontrib><description>The final stage in the life history of prehistoric pottery prior to archaeological recovery is usually the longest, and frequently the most dynamic. The remains of archaeological ceramics spend hundreds to thousands of years deposited within the upper layers of the earth’s crust where they encounter the same diagenetic environmental processes as the surrounding natural materials. Harsh conditions of subterranean environments induce physical stresses and chemical reactions, causing alterations of ceramic structure and composition. This is especially true of carbonate-rich ceramics, as carbonate phases are soluble when deposited within acidic environments. This paper examines common carbonate depletion and accretion effects of post-depositional environments on ancient ceramics from two rather different geological and archaeological contexts: Mesoamerica and the Mediterranean. Potters in both regions produce vessels with carbonate-rich materials—clays, calcite, limestone—that alter due to long exposure to low-pH sediments and continual water table fluctuations. Ceramic petrography is employed to identify traces of carbonate alterations within ceramic microstructure and to characterize fabrics. Elemental compositions of the same sherds are characterized through either scanning electron microscopy coupled with energy-dispersive spectrometry (SEM-EDS), inductively coupled plasma mass spectrometry and optical emission spectrometry (ICP-MS/OES) or neutron activation analysis (NAA). This method enabled comparison of the differing effects of post-depositional alteration of carbonate phases on bulk composition signatures commonly used to determine provenance.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min11070749</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accretion ; Activation analysis ; Archaeology ; Behavior ; Calcite ; Calcium ; Calcium carbonate ; Calcium carbonates ; Carbonates ; Ceramics ; Chemical reactions ; Clay ; Composite materials ; Composition ; Depletion ; Deposition ; Diagenesis ; Earth crust ; Electron microscopy ; Emission analysis ; Geology ; Groundwater table ; Historic artifacts ; Hypotheses ; Inductively coupled plasma mass spectrometry ; Investigations ; Life history ; Limestone ; Mass spectrometry ; Mass spectroscopy ; Microstructure ; Mineralogy ; Neutron activation analysis ; Optical emission spectroscopy ; Petrography ; Petrology ; Phases ; Physical stress ; Pottery ; Provenance ; Raw materials ; Scanning electron microscopy ; Sedimentary environments ; Sediments ; Sintering ; Water table ; Water table fluctuations</subject><ispartof>Minerals (Basel), 2021-07, Vol.11 (7), p.749</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-481ead84ce97a18cc102ccd740eac07bcc48e561a6aaf4079be41ab0b6c3d9093</citedby><cites>FETCH-LOGICAL-c298t-481ead84ce97a18cc102ccd740eac07bcc48e561a6aaf4079be41ab0b6c3d9093</cites><orcidid>0000-0002-2993-1250 ; 0000-0002-5686-0398 ; 0000-0002-2099-2129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554615340/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554615340?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11667,25731,27901,27902,36037,36989,44339,44566,74638,74869</link.rule.ids></links><search><creatorcontrib>Gilstrap, William D.</creatorcontrib><creatorcontrib>Meanwell, Jennifer L.</creatorcontrib><creatorcontrib>Paris, Elizabeth H.</creatorcontrib><creatorcontrib>López Bravo, Roberto</creatorcontrib><creatorcontrib>Day, Peter M.</creatorcontrib><title>Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects</title><title>Minerals (Basel)</title><description>The final stage in the life history of prehistoric pottery prior to archaeological recovery is usually the longest, and frequently the most dynamic. The remains of archaeological ceramics spend hundreds to thousands of years deposited within the upper layers of the earth’s crust where they encounter the same diagenetic environmental processes as the surrounding natural materials. Harsh conditions of subterranean environments induce physical stresses and chemical reactions, causing alterations of ceramic structure and composition. This is especially true of carbonate-rich ceramics, as carbonate phases are soluble when deposited within acidic environments. This paper examines common carbonate depletion and accretion effects of post-depositional environments on ancient ceramics from two rather different geological and archaeological contexts: Mesoamerica and the Mediterranean. Potters in both regions produce vessels with carbonate-rich materials—clays, calcite, limestone—that alter due to long exposure to low-pH sediments and continual water table fluctuations. Ceramic petrography is employed to identify traces of carbonate alterations within ceramic microstructure and to characterize fabrics. Elemental compositions of the same sherds are characterized through either scanning electron microscopy coupled with energy-dispersive spectrometry (SEM-EDS), inductively coupled plasma mass spectrometry and optical emission spectrometry (ICP-MS/OES) or neutron activation analysis (NAA). This method enabled comparison of the differing effects of post-depositional alteration of carbonate phases on bulk composition signatures commonly used to determine provenance.</description><subject>Accretion</subject><subject>Activation analysis</subject><subject>Archaeology</subject><subject>Behavior</subject><subject>Calcite</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Calcium carbonates</subject><subject>Carbonates</subject><subject>Ceramics</subject><subject>Chemical reactions</subject><subject>Clay</subject><subject>Composite materials</subject><subject>Composition</subject><subject>Depletion</subject><subject>Deposition</subject><subject>Diagenesis</subject><subject>Earth crust</subject><subject>Electron microscopy</subject><subject>Emission analysis</subject><subject>Geology</subject><subject>Groundwater table</subject><subject>Historic artifacts</subject><subject>Hypotheses</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Investigations</subject><subject>Life history</subject><subject>Limestone</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microstructure</subject><subject>Mineralogy</subject><subject>Neutron activation analysis</subject><subject>Optical emission spectroscopy</subject><subject>Petrography</subject><subject>Petrology</subject><subject>Phases</subject><subject>Physical stress</subject><subject>Pottery</subject><subject>Provenance</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>Sedimentary environments</subject><subject>Sediments</subject><subject>Sintering</subject><subject>Water table</subject><subject>Water table fluctuations</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNpNUMtOwzAQtBBIVKUnfsASRxSwY-dhblUoD6kSFQKJW-RsNtRVEhfbPfTvcSmH7mX2MTPSDiHXnN0Jodj9YEbOWcEKqc7IJGVFlvBcfJ2f9Jdk5v2GxVJclFk6IfuV9SF5xK31Jhg76p7O-4BOHwZqO1rpHsxuiOiaeA5IV2vt0VMz0rmDtUbb228DUVhF2WDAP9Do1-Ofgx5b-o6t8cGZZve3WnQdQvBX5KLTvcfZP07J59Pio3pJlm_Pr9V8mUCqypDIkqNuSwmoCs1LAM5SgLaQDDWwogGQJWY517nWnWSFalBy3bAmB9EqpsSU3Bx9t87-7NCHemN3Lj7q6zTLZM4zIVlk3R5Z4Kz3Drt668yg3b7mrD7EW5_EK34BoFxvlA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Gilstrap, William D.</creator><creator>Meanwell, Jennifer L.</creator><creator>Paris, Elizabeth H.</creator><creator>López Bravo, Roberto</creator><creator>Day, Peter M.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2993-1250</orcidid><orcidid>https://orcid.org/0000-0002-5686-0398</orcidid><orcidid>https://orcid.org/0000-0002-2099-2129</orcidid></search><sort><creationdate>20210701</creationdate><title>Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects</title><author>Gilstrap, William D. ; Meanwell, Jennifer L. ; Paris, Elizabeth H. ; López Bravo, Roberto ; Day, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-481ead84ce97a18cc102ccd740eac07bcc48e561a6aaf4079be41ab0b6c3d9093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accretion</topic><topic>Activation analysis</topic><topic>Archaeology</topic><topic>Behavior</topic><topic>Calcite</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Calcium carbonates</topic><topic>Carbonates</topic><topic>Ceramics</topic><topic>Chemical reactions</topic><topic>Clay</topic><topic>Composite materials</topic><topic>Composition</topic><topic>Depletion</topic><topic>Deposition</topic><topic>Diagenesis</topic><topic>Earth crust</topic><topic>Electron microscopy</topic><topic>Emission analysis</topic><topic>Geology</topic><topic>Groundwater table</topic><topic>Historic artifacts</topic><topic>Hypotheses</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Investigations</topic><topic>Life history</topic><topic>Limestone</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microstructure</topic><topic>Mineralogy</topic><topic>Neutron activation analysis</topic><topic>Optical emission spectroscopy</topic><topic>Petrography</topic><topic>Petrology</topic><topic>Phases</topic><topic>Physical stress</topic><topic>Pottery</topic><topic>Provenance</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>Sedimentary environments</topic><topic>Sediments</topic><topic>Sintering</topic><topic>Water table</topic><topic>Water table fluctuations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilstrap, William D.</creatorcontrib><creatorcontrib>Meanwell, Jennifer L.</creatorcontrib><creatorcontrib>Paris, Elizabeth H.</creatorcontrib><creatorcontrib>López Bravo, Roberto</creatorcontrib><creatorcontrib>Day, Peter M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilstrap, William D.</au><au>Meanwell, Jennifer L.</au><au>Paris, Elizabeth H.</au><au>López Bravo, Roberto</au><au>Day, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects</atitle><jtitle>Minerals (Basel)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>7</issue><spage>749</spage><pages>749-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>The final stage in the life history of prehistoric pottery prior to archaeological recovery is usually the longest, and frequently the most dynamic. The remains of archaeological ceramics spend hundreds to thousands of years deposited within the upper layers of the earth’s crust where they encounter the same diagenetic environmental processes as the surrounding natural materials. Harsh conditions of subterranean environments induce physical stresses and chemical reactions, causing alterations of ceramic structure and composition. This is especially true of carbonate-rich ceramics, as carbonate phases are soluble when deposited within acidic environments. This paper examines common carbonate depletion and accretion effects of post-depositional environments on ancient ceramics from two rather different geological and archaeological contexts: Mesoamerica and the Mediterranean. Potters in both regions produce vessels with carbonate-rich materials—clays, calcite, limestone—that alter due to long exposure to low-pH sediments and continual water table fluctuations. Ceramic petrography is employed to identify traces of carbonate alterations within ceramic microstructure and to characterize fabrics. Elemental compositions of the same sherds are characterized through either scanning electron microscopy coupled with energy-dispersive spectrometry (SEM-EDS), inductively coupled plasma mass spectrometry and optical emission spectrometry (ICP-MS/OES) or neutron activation analysis (NAA). This method enabled comparison of the differing effects of post-depositional alteration of carbonate phases on bulk composition signatures commonly used to determine provenance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min11070749</doi><orcidid>https://orcid.org/0000-0002-2993-1250</orcidid><orcidid>https://orcid.org/0000-0002-5686-0398</orcidid><orcidid>https://orcid.org/0000-0002-2099-2129</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2021-07, Vol.11 (7), p.749
issn 2075-163X
2075-163X
language eng
recordid cdi_proquest_journals_2554615340
source ABI/INFORM Global; Publicly Available Content (ProQuest)
subjects Accretion
Activation analysis
Archaeology
Behavior
Calcite
Calcium
Calcium carbonate
Calcium carbonates
Carbonates
Ceramics
Chemical reactions
Clay
Composite materials
Composition
Depletion
Deposition
Diagenesis
Earth crust
Electron microscopy
Emission analysis
Geology
Groundwater table
Historic artifacts
Hypotheses
Inductively coupled plasma mass spectrometry
Investigations
Life history
Limestone
Mass spectrometry
Mass spectroscopy
Microstructure
Mineralogy
Neutron activation analysis
Optical emission spectroscopy
Petrography
Petrology
Phases
Physical stress
Pottery
Provenance
Raw materials
Scanning electron microscopy
Sedimentary environments
Sediments
Sintering
Water table
Water table fluctuations
title Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-Depositional%20Alteration%20of%20Calcium%20Carbonate%20Phases%20in%20Archaeological%20Ceramics:%20Depletion%20and%20Redistribution%20Effects&rft.jtitle=Minerals%20(Basel)&rft.au=Gilstrap,%20William%20D.&rft.date=2021-07-01&rft.volume=11&rft.issue=7&rft.spage=749&rft.pages=749-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min11070749&rft_dat=%3Cproquest_cross%3E2554615340%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-481ead84ce97a18cc102ccd740eac07bcc48e561a6aaf4079be41ab0b6c3d9093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554615340&rft_id=info:pmid/&rfr_iscdi=true