Loading…

Inference on semiparametric multinomial response models

We explore inference on regression coefficients in semiparametric multinomial response models. We consider cross-sectional, and both static and dynamic panel settings where we focus throughout on inference under sufficient conditions for point identification. The approach to identification uses a ma...

Full description

Saved in:
Bibliographic Details
Published in:Quantitative economics 2021-07, Vol.12 (3), p.743-777
Main Authors: Khan, Shakeeb, Ouyang, Fu, Tamer, Elie T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4418-938ca9405ac0230c79385682315325576d6fc34aa76395734ff6de85cb3b35fe3
cites cdi_FETCH-LOGICAL-c4418-938ca9405ac0230c79385682315325576d6fc34aa76395734ff6de85cb3b35fe3
container_end_page 777
container_issue 3
container_start_page 743
container_title Quantitative economics
container_volume 12
creator Khan, Shakeeb
Ouyang, Fu
Tamer, Elie T
description We explore inference on regression coefficients in semiparametric multinomial response models. We consider cross-sectional, and both static and dynamic panel settings where we focus throughout on inference under sufficient conditions for point identification. The approach to identification uses a matching insight throughout all three models coupled with variation in regressors: with cross-section data, we match across individuals while with panel data, we match within individuals over time. Across models, we relax the Indpendence of Irrelevant Alternatives (or IIA assumption, see McFadden (1974)) and allow for arbitrary correlation in the unobservables that determine utility of various alternatives. For the cross-sectional model, estimation is based on a localized rank objective function, analogous to that used in Abrevaya, Hausman, and Khan (2010), and presents a generalization of existing approaches. In panel data settings, rates of convergence are shown to exhibit a curse of dimensionality in the number of alternatives. The results for the dynamic panel data model generalize the work of Honoré and Kyriazidou (2000) to cover the semiparametric multinomial case. A simulation study establishes adequate finite sample properties of our new procedures. We apply our estimators to a scanner panel data set.
doi_str_mv 10.3982/QE1315
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2555226289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735383056</galeid><sourcerecordid>A735383056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4418-938ca9405ac0230c79385682315325576d6fc34aa76395734ff6de85cb3b35fe3</originalsourceid><addsrcrecordid>eNp1kN9LwzAQx4soOOb8D4SC4Ftnkmt-9HGMqYOhDNxzyNJEMtqmJh2y_96MCvri3cOF4_v53uWy7BajOVSCPG5XGDC9yCaY06rgAPjyz_s6m8V4QClACMbxJOPrzppgOm1y3-XRtK5XQbVmCE7n7bEZXOdbp5o8mNj7Lpq89bVp4k12ZVUTzeynTrPd0-p9-VJs3p7Xy8Wm0GWJRVGB0KoqEVUaEUCapwZlgqQdgVDKWc2shlIpzqCiHEprWW0E1XvYA7UGptn96NsH_3k0cZAHfwxdGikTTwlhRFRJNR9VH6ox0nXWD0HplHX6kPadsS71FxwoCECUJeBhBHTwMQZjZR9cq8JJYiTPh5TjIX-dv5LD6R-V3O4WrwQhXIoE3I2ASXNdlOcSBx_SukAFg29Wv3pZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555226289</pqid></control><display><type>article</type><title>Inference on semiparametric multinomial response models</title><source>EconLit s plnými texty</source><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><source>Wiley Open Access</source><creator>Khan, Shakeeb ; Ouyang, Fu ; Tamer, Elie T</creator><creatorcontrib>Khan, Shakeeb ; Ouyang, Fu ; Tamer, Elie T</creatorcontrib><description>We explore inference on regression coefficients in semiparametric multinomial response models. We consider cross-sectional, and both static and dynamic panel settings where we focus throughout on inference under sufficient conditions for point identification. The approach to identification uses a matching insight throughout all three models coupled with variation in regressors: with cross-section data, we match across individuals while with panel data, we match within individuals over time. Across models, we relax the Indpendence of Irrelevant Alternatives (or IIA assumption, see McFadden (1974)) and allow for arbitrary correlation in the unobservables that determine utility of various alternatives. For the cross-sectional model, estimation is based on a localized rank objective function, analogous to that used in Abrevaya, Hausman, and Khan (2010), and presents a generalization of existing approaches. In panel data settings, rates of convergence are shown to exhibit a curse of dimensionality in the number of alternatives. The results for the dynamic panel data model generalize the work of Honoré and Kyriazidou (2000) to cover the semiparametric multinomial case. A simulation study establishes adequate finite sample properties of our new procedures. We apply our estimators to a scanner panel data set.</description><identifier>ISSN: 1759-7331</identifier><identifier>ISSN: 1759-7323</identifier><identifier>EISSN: 1759-7331</identifier><identifier>DOI: 10.3982/QE1315</identifier><language>eng</language><publisher>New Haven, CT: The Econometric Society</publisher><subject>Alternatives ; C14 ; C23 ; C35 ; Convergence ; Data models ; dynamic panel data ; Econometrics ; Identification ; Inference ; Insight ; Longitudinal studies ; Multinomial response ; Panel data ; Preferences ; Probability ; Random variables ; rank estimation ; Simulation</subject><ispartof>Quantitative economics, 2021-07, Vol.12 (3), p.743-777</ispartof><rights>Copyright © 2021 The Authors.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4418-938ca9405ac0230c79385682315325576d6fc34aa76395734ff6de85cb3b35fe3</citedby><cites>FETCH-LOGICAL-c4418-938ca9405ac0230c79385682315325576d6fc34aa76395734ff6de85cb3b35fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2555226289/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2555226289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,11688,12847,25753,27924,27925,33223,36060,37012,44363,44590,46052,46476,74895,75126</link.rule.ids></links><search><creatorcontrib>Khan, Shakeeb</creatorcontrib><creatorcontrib>Ouyang, Fu</creatorcontrib><creatorcontrib>Tamer, Elie T</creatorcontrib><title>Inference on semiparametric multinomial response models</title><title>Quantitative economics</title><description>We explore inference on regression coefficients in semiparametric multinomial response models. We consider cross-sectional, and both static and dynamic panel settings where we focus throughout on inference under sufficient conditions for point identification. The approach to identification uses a matching insight throughout all three models coupled with variation in regressors: with cross-section data, we match across individuals while with panel data, we match within individuals over time. Across models, we relax the Indpendence of Irrelevant Alternatives (or IIA assumption, see McFadden (1974)) and allow for arbitrary correlation in the unobservables that determine utility of various alternatives. For the cross-sectional model, estimation is based on a localized rank objective function, analogous to that used in Abrevaya, Hausman, and Khan (2010), and presents a generalization of existing approaches. In panel data settings, rates of convergence are shown to exhibit a curse of dimensionality in the number of alternatives. The results for the dynamic panel data model generalize the work of Honoré and Kyriazidou (2000) to cover the semiparametric multinomial case. A simulation study establishes adequate finite sample properties of our new procedures. We apply our estimators to a scanner panel data set.</description><subject>Alternatives</subject><subject>C14</subject><subject>C23</subject><subject>C35</subject><subject>Convergence</subject><subject>Data models</subject><subject>dynamic panel data</subject><subject>Econometrics</subject><subject>Identification</subject><subject>Inference</subject><subject>Insight</subject><subject>Longitudinal studies</subject><subject>Multinomial response</subject><subject>Panel data</subject><subject>Preferences</subject><subject>Probability</subject><subject>Random variables</subject><subject>rank estimation</subject><subject>Simulation</subject><issn>1759-7331</issn><issn>1759-7323</issn><issn>1759-7331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kN9LwzAQx4soOOb8D4SC4Ftnkmt-9HGMqYOhDNxzyNJEMtqmJh2y_96MCvri3cOF4_v53uWy7BajOVSCPG5XGDC9yCaY06rgAPjyz_s6m8V4QClACMbxJOPrzppgOm1y3-XRtK5XQbVmCE7n7bEZXOdbp5o8mNj7Lpq89bVp4k12ZVUTzeynTrPd0-p9-VJs3p7Xy8Wm0GWJRVGB0KoqEVUaEUCapwZlgqQdgVDKWc2shlIpzqCiHEprWW0E1XvYA7UGptn96NsH_3k0cZAHfwxdGikTTwlhRFRJNR9VH6ox0nXWD0HplHX6kPadsS71FxwoCECUJeBhBHTwMQZjZR9cq8JJYiTPh5TjIX-dv5LD6R-V3O4WrwQhXIoE3I2ASXNdlOcSBx_SukAFg29Wv3pZ</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Khan, Shakeeb</creator><creator>Ouyang, Fu</creator><creator>Tamer, Elie T</creator><general>The Econometric Society</general><general>John Wiley &amp; Sons, Inc</general><scope>OT2</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>202107</creationdate><title>Inference on semiparametric multinomial response models</title><author>Khan, Shakeeb ; Ouyang, Fu ; Tamer, Elie T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4418-938ca9405ac0230c79385682315325576d6fc34aa76395734ff6de85cb3b35fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternatives</topic><topic>C14</topic><topic>C23</topic><topic>C35</topic><topic>Convergence</topic><topic>Data models</topic><topic>dynamic panel data</topic><topic>Econometrics</topic><topic>Identification</topic><topic>Inference</topic><topic>Insight</topic><topic>Longitudinal studies</topic><topic>Multinomial response</topic><topic>Panel data</topic><topic>Preferences</topic><topic>Probability</topic><topic>Random variables</topic><topic>rank estimation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Shakeeb</creatorcontrib><creatorcontrib>Ouyang, Fu</creatorcontrib><creatorcontrib>Tamer, Elie T</creatorcontrib><collection>EconStor</collection><collection>Wiley Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Quantitative economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Shakeeb</au><au>Ouyang, Fu</au><au>Tamer, Elie T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference on semiparametric multinomial response models</atitle><jtitle>Quantitative economics</jtitle><date>2021-07</date><risdate>2021</risdate><volume>12</volume><issue>3</issue><spage>743</spage><epage>777</epage><pages>743-777</pages><issn>1759-7331</issn><issn>1759-7323</issn><eissn>1759-7331</eissn><abstract>We explore inference on regression coefficients in semiparametric multinomial response models. We consider cross-sectional, and both static and dynamic panel settings where we focus throughout on inference under sufficient conditions for point identification. The approach to identification uses a matching insight throughout all three models coupled with variation in regressors: with cross-section data, we match across individuals while with panel data, we match within individuals over time. Across models, we relax the Indpendence of Irrelevant Alternatives (or IIA assumption, see McFadden (1974)) and allow for arbitrary correlation in the unobservables that determine utility of various alternatives. For the cross-sectional model, estimation is based on a localized rank objective function, analogous to that used in Abrevaya, Hausman, and Khan (2010), and presents a generalization of existing approaches. In panel data settings, rates of convergence are shown to exhibit a curse of dimensionality in the number of alternatives. The results for the dynamic panel data model generalize the work of Honoré and Kyriazidou (2000) to cover the semiparametric multinomial case. A simulation study establishes adequate finite sample properties of our new procedures. We apply our estimators to a scanner panel data set.</abstract><cop>New Haven, CT</cop><pub>The Econometric Society</pub><doi>10.3982/QE1315</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-7331
ispartof Quantitative economics, 2021-07, Vol.12 (3), p.743-777
issn 1759-7331
1759-7323
1759-7331
language eng
recordid cdi_proquest_journals_2555226289
source EconLit s plnými texty; EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); Publicly Available Content Database; ABI/INFORM Global; Wiley Open Access
subjects Alternatives
C14
C23
C35
Convergence
Data models
dynamic panel data
Econometrics
Identification
Inference
Insight
Longitudinal studies
Multinomial response
Panel data
Preferences
Probability
Random variables
rank estimation
Simulation
title Inference on semiparametric multinomial response models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20on%20semiparametric%20multinomial%20response%20models&rft.jtitle=Quantitative%20economics&rft.au=Khan,%20Shakeeb&rft.date=2021-07&rft.volume=12&rft.issue=3&rft.spage=743&rft.epage=777&rft.pages=743-777&rft.issn=1759-7331&rft.eissn=1759-7331&rft_id=info:doi/10.3982/QE1315&rft_dat=%3Cgale_proqu%3EA735383056%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4418-938ca9405ac0230c79385682315325576d6fc34aa76395734ff6de85cb3b35fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555226289&rft_id=info:pmid/&rft_galeid=A735383056&rfr_iscdi=true