Loading…
Effective enantiomeric identification of aromatic amines by tyrosine-modified pillar[5]arenes as chiral NMR solvating agents
Endowed with electron-rich cavities and potential chiral platforms, chiral pillararenes are greatly useful; however, their chiral recognition remains a challenge due to chiral racemization caused by the rotation of phenolic units. Although pillar[n]arenes with bulky substituents and host–guest inter...
Saved in:
Published in: | Organic chemistry frontiers an international journal of organic chemistry 2021-08, Vol.8 (15), p.4144-4152 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-989fa2fced9a4cf0de2d6ad7e954c4fb45f3c256d840d4700d5182830a6415cd3 |
---|---|
cites | |
container_end_page | 4152 |
container_issue | 15 |
container_start_page | 4144 |
container_title | Organic chemistry frontiers an international journal of organic chemistry |
container_volume | 8 |
creator | Liu, Luzhi Ma, Cuiguang He, Qin Huang, Yan Duan, Wengui |
description | Endowed with electron-rich cavities and potential chiral platforms, chiral pillararenes are greatly useful; however, their chiral recognition remains a challenge due to chiral racemization caused by the rotation of phenolic units. Although pillar[n]arenes with bulky substituents and host–guest interaction have been reported to avoid this shortcoming, the chiral recognition of pillar[n]arenes as chiral NMR reagents has not been reported yet. Herein, we first reported two novel tyrosine-modified pillar[5]arenes l-PCSA and d-PCSA as chiral solvating agents (CSAs) for the enantioselective recognition of α-aromatic amines by 1H NMR. The PCSAs showed excellent chiral discrimination and good complementarity for α-naphthylethylamine (G1) and α-phenylethylamine (G2) over a wide range of mole fractions (CSA%: 9%–95%). In addition, there is a linear relationship between the experimental and observed values of enantiomeric excess of G1 in the presence of l-PCSA, which indicated that l-PCSA can be used to rapidly and reliably analyze the enantiomeric purity of various naphthylethylamine samples. Interestingly, the NMR signals of the nonequivalent protons between the R and S configurations in the presence of stereoisomers of pillararenes are completely opposite, which can be used to establish a simple method to determine the absolute configuration of G1 and G2 successfully. Moreover, the chiral recognition of pillararenes on different substrates was expanded. At the same time, the enantioselective recognition behaviors are also discussed by means of the mole ratio plot, host–guest interaction and a proposed theoretical model of PCSAs with chiral substrates. This work provides a good example for designing effective pillararene-based chiral NMR reagents. |
doi_str_mv | 10.1039/d1qo00525a |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2555307907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555307907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-989fa2fced9a4cf0de2d6ad7e954c4fb45f3c256d840d4700d5182830a6415cd3</originalsourceid><addsrcrecordid>eNpNj8tKA0EQRRtRMMRs_IIG16PVr3ksJUQNRAXRlUio9CN2mJlOuieBgB9viy5c1T3F5RRFyCWDawaiuTFsFwAUV3hCRjyHQjIGp__yOZmktAEAxlUJqhqRr5lzVg_-YKntsR986Gz0mnpjMzivMa96GhzFGLoMmmLne5vo6kiHYwwpQ9EFk7vW0K1vW4zv6gOj_SlhovrTR2zp0-MLTaE9ZEW_prjO-nRBzhy2yU7-5pi83c1epw_F4vl-Pr1dFFrIaiiaunHInbamQakdGMtNiaayjZJaupVUTuj8kKklGFkBGMVqXgvAUjKljRiTq1_vNobd3qZhuQn72OeTS66UElA1UIlvMx9iiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555307907</pqid></control><display><type>article</type><title>Effective enantiomeric identification of aromatic amines by tyrosine-modified pillar[5]arenes as chiral NMR solvating agents</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Liu, Luzhi ; Ma, Cuiguang ; He, Qin ; Huang, Yan ; Duan, Wengui</creator><creatorcontrib>Liu, Luzhi ; Ma, Cuiguang ; He, Qin ; Huang, Yan ; Duan, Wengui</creatorcontrib><description>Endowed with electron-rich cavities and potential chiral platforms, chiral pillararenes are greatly useful; however, their chiral recognition remains a challenge due to chiral racemization caused by the rotation of phenolic units. Although pillar[n]arenes with bulky substituents and host–guest interaction have been reported to avoid this shortcoming, the chiral recognition of pillar[n]arenes as chiral NMR reagents has not been reported yet. Herein, we first reported two novel tyrosine-modified pillar[5]arenes l-PCSA and d-PCSA as chiral solvating agents (CSAs) for the enantioselective recognition of α-aromatic amines by 1H NMR. The PCSAs showed excellent chiral discrimination and good complementarity for α-naphthylethylamine (G1) and α-phenylethylamine (G2) over a wide range of mole fractions (CSA%: 9%–95%). In addition, there is a linear relationship between the experimental and observed values of enantiomeric excess of G1 in the presence of l-PCSA, which indicated that l-PCSA can be used to rapidly and reliably analyze the enantiomeric purity of various naphthylethylamine samples. Interestingly, the NMR signals of the nonequivalent protons between the R and S configurations in the presence of stereoisomers of pillararenes are completely opposite, which can be used to establish a simple method to determine the absolute configuration of G1 and G2 successfully. Moreover, the chiral recognition of pillararenes on different substrates was expanded. At the same time, the enantioselective recognition behaviors are also discussed by means of the mole ratio plot, host–guest interaction and a proposed theoretical model of PCSAs with chiral substrates. This work provides a good example for designing effective pillararene-based chiral NMR reagents.</description><identifier>ISSN: 2052-4110</identifier><identifier>EISSN: 2052-4110</identifier><identifier>DOI: 10.1039/d1qo00525a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Absolute configuration ; Amines ; Aromatic compounds ; Complementarity ; Configurations ; Enantiomers ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Phenethylamine ; Phenolic compounds ; Phenols ; Phenylethylamine ; Protons ; Racemization ; Reagents ; Recognition ; Stereoisomerism ; Stereoisomers ; Substrates ; Tyrosine</subject><ispartof>Organic chemistry frontiers an international journal of organic chemistry, 2021-08, Vol.8 (15), p.4144-4152</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-989fa2fced9a4cf0de2d6ad7e954c4fb45f3c256d840d4700d5182830a6415cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, Luzhi</creatorcontrib><creatorcontrib>Ma, Cuiguang</creatorcontrib><creatorcontrib>He, Qin</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Duan, Wengui</creatorcontrib><title>Effective enantiomeric identification of aromatic amines by tyrosine-modified pillar[5]arenes as chiral NMR solvating agents</title><title>Organic chemistry frontiers an international journal of organic chemistry</title><description>Endowed with electron-rich cavities and potential chiral platforms, chiral pillararenes are greatly useful; however, their chiral recognition remains a challenge due to chiral racemization caused by the rotation of phenolic units. Although pillar[n]arenes with bulky substituents and host–guest interaction have been reported to avoid this shortcoming, the chiral recognition of pillar[n]arenes as chiral NMR reagents has not been reported yet. Herein, we first reported two novel tyrosine-modified pillar[5]arenes l-PCSA and d-PCSA as chiral solvating agents (CSAs) for the enantioselective recognition of α-aromatic amines by 1H NMR. The PCSAs showed excellent chiral discrimination and good complementarity for α-naphthylethylamine (G1) and α-phenylethylamine (G2) over a wide range of mole fractions (CSA%: 9%–95%). In addition, there is a linear relationship between the experimental and observed values of enantiomeric excess of G1 in the presence of l-PCSA, which indicated that l-PCSA can be used to rapidly and reliably analyze the enantiomeric purity of various naphthylethylamine samples. Interestingly, the NMR signals of the nonequivalent protons between the R and S configurations in the presence of stereoisomers of pillararenes are completely opposite, which can be used to establish a simple method to determine the absolute configuration of G1 and G2 successfully. Moreover, the chiral recognition of pillararenes on different substrates was expanded. At the same time, the enantioselective recognition behaviors are also discussed by means of the mole ratio plot, host–guest interaction and a proposed theoretical model of PCSAs with chiral substrates. This work provides a good example for designing effective pillararene-based chiral NMR reagents.</description><subject>Absolute configuration</subject><subject>Amines</subject><subject>Aromatic compounds</subject><subject>Complementarity</subject><subject>Configurations</subject><subject>Enantiomers</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Phenethylamine</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Phenylethylamine</subject><subject>Protons</subject><subject>Racemization</subject><subject>Reagents</subject><subject>Recognition</subject><subject>Stereoisomerism</subject><subject>Stereoisomers</subject><subject>Substrates</subject><subject>Tyrosine</subject><issn>2052-4110</issn><issn>2052-4110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNj8tKA0EQRRtRMMRs_IIG16PVr3ksJUQNRAXRlUio9CN2mJlOuieBgB9viy5c1T3F5RRFyCWDawaiuTFsFwAUV3hCRjyHQjIGp__yOZmktAEAxlUJqhqRr5lzVg_-YKntsR986Gz0mnpjMzivMa96GhzFGLoMmmLne5vo6kiHYwwpQ9EFk7vW0K1vW4zv6gOj_SlhovrTR2zp0-MLTaE9ZEW_prjO-nRBzhy2yU7-5pi83c1epw_F4vl-Pr1dFFrIaiiaunHInbamQakdGMtNiaayjZJaupVUTuj8kKklGFkBGMVqXgvAUjKljRiTq1_vNobd3qZhuQn72OeTS66UElA1UIlvMx9iiw</recordid><startdate>20210807</startdate><enddate>20210807</enddate><creator>Liu, Luzhi</creator><creator>Ma, Cuiguang</creator><creator>He, Qin</creator><creator>Huang, Yan</creator><creator>Duan, Wengui</creator><general>Royal Society of Chemistry</general><scope>7QO</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>P64</scope></search><sort><creationdate>20210807</creationdate><title>Effective enantiomeric identification of aromatic amines by tyrosine-modified pillar[5]arenes as chiral NMR solvating agents</title><author>Liu, Luzhi ; Ma, Cuiguang ; He, Qin ; Huang, Yan ; Duan, Wengui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-989fa2fced9a4cf0de2d6ad7e954c4fb45f3c256d840d4700d5182830a6415cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absolute configuration</topic><topic>Amines</topic><topic>Aromatic compounds</topic><topic>Complementarity</topic><topic>Configurations</topic><topic>Enantiomers</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Phenethylamine</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Phenylethylamine</topic><topic>Protons</topic><topic>Racemization</topic><topic>Reagents</topic><topic>Recognition</topic><topic>Stereoisomerism</topic><topic>Stereoisomers</topic><topic>Substrates</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Luzhi</creatorcontrib><creatorcontrib>Ma, Cuiguang</creatorcontrib><creatorcontrib>He, Qin</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Duan, Wengui</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Organic chemistry frontiers an international journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Luzhi</au><au>Ma, Cuiguang</au><au>He, Qin</au><au>Huang, Yan</au><au>Duan, Wengui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective enantiomeric identification of aromatic amines by tyrosine-modified pillar[5]arenes as chiral NMR solvating agents</atitle><jtitle>Organic chemistry frontiers an international journal of organic chemistry</jtitle><date>2021-08-07</date><risdate>2021</risdate><volume>8</volume><issue>15</issue><spage>4144</spage><epage>4152</epage><pages>4144-4152</pages><issn>2052-4110</issn><eissn>2052-4110</eissn><abstract>Endowed with electron-rich cavities and potential chiral platforms, chiral pillararenes are greatly useful; however, their chiral recognition remains a challenge due to chiral racemization caused by the rotation of phenolic units. Although pillar[n]arenes with bulky substituents and host–guest interaction have been reported to avoid this shortcoming, the chiral recognition of pillar[n]arenes as chiral NMR reagents has not been reported yet. Herein, we first reported two novel tyrosine-modified pillar[5]arenes l-PCSA and d-PCSA as chiral solvating agents (CSAs) for the enantioselective recognition of α-aromatic amines by 1H NMR. The PCSAs showed excellent chiral discrimination and good complementarity for α-naphthylethylamine (G1) and α-phenylethylamine (G2) over a wide range of mole fractions (CSA%: 9%–95%). In addition, there is a linear relationship between the experimental and observed values of enantiomeric excess of G1 in the presence of l-PCSA, which indicated that l-PCSA can be used to rapidly and reliably analyze the enantiomeric purity of various naphthylethylamine samples. Interestingly, the NMR signals of the nonequivalent protons between the R and S configurations in the presence of stereoisomers of pillararenes are completely opposite, which can be used to establish a simple method to determine the absolute configuration of G1 and G2 successfully. Moreover, the chiral recognition of pillararenes on different substrates was expanded. At the same time, the enantioselective recognition behaviors are also discussed by means of the mole ratio plot, host–guest interaction and a proposed theoretical model of PCSAs with chiral substrates. This work provides a good example for designing effective pillararene-based chiral NMR reagents.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1qo00525a</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4110 |
ispartof | Organic chemistry frontiers an international journal of organic chemistry, 2021-08, Vol.8 (15), p.4144-4152 |
issn | 2052-4110 2052-4110 |
language | eng |
recordid | cdi_proquest_journals_2555307907 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Absolute configuration Amines Aromatic compounds Complementarity Configurations Enantiomers NMR Nuclear magnetic resonance Organic chemistry Phenethylamine Phenolic compounds Phenols Phenylethylamine Protons Racemization Reagents Recognition Stereoisomerism Stereoisomers Substrates Tyrosine |
title | Effective enantiomeric identification of aromatic amines by tyrosine-modified pillar[5]arenes as chiral NMR solvating agents |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20enantiomeric%20identification%20of%20aromatic%20amines%20by%20tyrosine-modified%20pillar%5B5%5Darenes%20as%20chiral%20NMR%20solvating%20agents&rft.jtitle=Organic%20chemistry%20frontiers%20an%20international%20journal%20of%20organic%20chemistry&rft.au=Liu,%20Luzhi&rft.date=2021-08-07&rft.volume=8&rft.issue=15&rft.spage=4144&rft.epage=4152&rft.pages=4144-4152&rft.issn=2052-4110&rft.eissn=2052-4110&rft_id=info:doi/10.1039/d1qo00525a&rft_dat=%3Cproquest%3E2555307907%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-989fa2fced9a4cf0de2d6ad7e954c4fb45f3c256d840d4700d5182830a6415cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555307907&rft_id=info:pmid/&rfr_iscdi=true |