Loading…

Recovery of nano-lignin from anaerobic treated palm oil mill effluent (AT-POME)

Lignin is the main polymers in woody biomass aside cellulose and hemicelluloses Recently, nano-lignin is gaining importance due to the increasing demand for bio-based and bio-active nanomaterial fillers for many applications such as in composite and textile industries. Palm oil mill effluent (POME)...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Earth and environmental science 2020-04, Vol.476 (1), p.12093
Main Authors: Ismail, H S, Ibrahim, A H, Abidin, C Z A, Ridwan, F M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lignin is the main polymers in woody biomass aside cellulose and hemicelluloses Recently, nano-lignin is gaining importance due to the increasing demand for bio-based and bio-active nanomaterial fillers for many applications such as in composite and textile industries. Palm oil mill effluent (POME) is the main wastewater produce by palm oil mills. Anaerobically treated (AT-POME) contains high soluble lignin due to the anaerobic digestion of cellulosic material in POME. Nano-lignin was precipitated by adjusting the initial pH of AT-POME during the sonication process. Sulfuric acid (H2SO4), nitric acid (HNO3), hydrochloric acid (HCl) and phosphoric acid (H3PO4) were used to adjust the initial pH of AT-POME. Result shows that sulfuric acid was the most suitable acid to be used as it could recovered 96% of the soluble lignin in AT-POME. The presence of ultrasonic during the precipitation process had reduced the size to 383.4 nm. The optimum operating parameter for lignin recovery is at pH 4 using sulfuric acid and sonicated at 80 watts for 15 minutes. This study shows that sonication could reduce the size of precipitated lignin from AT-POME. In addition, removal of lignin from AT-POME also reduced the COD content of AT-POME.
ISSN:1755-1307
1755-1315
DOI:10.1088/1755-1315/476/1/012093