Loading…
Superalgebras with graded involution: Classifying minimal varieties of quadratic growth
Let V be a variety of superalgebras with graded involution and let cngri(V) be its sequence of ⁎-graded codimensions. We say that V has polynomial growth nk if asymptotically cngri(V)≈ank, for some a≠0. Furthermore, V is minimal of polynomial growth nk if cngri(V) grows as nk and any proper subvarie...
Saved in:
Published in: | Linear algebra and its applications 2021-07, Vol.621, p.105-134 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-7e1d70085dbab4e2bed4bea94989f243d4050002773acc2aca1df3d42c25e62f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-7e1d70085dbab4e2bed4bea94989f243d4050002773acc2aca1df3d42c25e62f3 |
container_end_page | 134 |
container_issue | |
container_start_page | 105 |
container_title | Linear algebra and its applications |
container_volume | 621 |
creator | Ioppolo, A. dos Santos, R.B. Santos, M.L.O. Vieira, A.C. |
description | Let V be a variety of superalgebras with graded involution and let cngri(V) be its sequence of ⁎-graded codimensions. We say that V has polynomial growth nk if asymptotically cngri(V)≈ank, for some a≠0. Furthermore, V is minimal of polynomial growth nk if cngri(V) grows as nk and any proper subvariety of V has polynomial growth nt, with t |
doi_str_mv | 10.1016/j.laa.2021.03.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555685032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379521001087</els_id><sourcerecordid>2555685032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7e1d70085dbab4e2bed4bea94989f243d4050002773acc2aca1df3d42c25e62f3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_wLuC160nSdN2eiXDLxh4oeJlSJPTLaVrtyTd2L83Y157deDwPufjIeSWQkaBFvdt1imVMWA0A54BpWdkQquSp7QSxTmZALA85eVMXJIr71sAyEtgE_LzOW7QqW6JtVM-2duwSpZOGTSJ7XdDNwY79A_JvFPe2-Zg-2Wytr1dqy7ZKWcxWPTJ0CTbURmngtWRHvZhdU0uGtV5vPmrU_L98vw1f0sXH6_v86dFqjkTIS2RmhKgEqZWdY6sRpPXqGb5rJo1LOcmBxFvZWXJldZMaUVNE7tMM4EFa_iU3J3mbtywHdEH2Q6j6-NKyYQQRSWAs5iip5R2g_cOG7lx8Qd3kBTk0Z9sZfQnj_4kcBn9RebxxGA8f2fRSa8t9hqNdaiDNIP9h_4FOQV5iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555685032</pqid></control><display><type>article</type><title>Superalgebras with graded involution: Classifying minimal varieties of quadratic growth</title><source>ScienceDirect Freedom Collection</source><creator>Ioppolo, A. ; dos Santos, R.B. ; Santos, M.L.O. ; Vieira, A.C.</creator><creatorcontrib>Ioppolo, A. ; dos Santos, R.B. ; Santos, M.L.O. ; Vieira, A.C.</creatorcontrib><description>Let V be a variety of superalgebras with graded involution and let cngri(V) be its sequence of ⁎-graded codimensions. We say that V has polynomial growth nk if asymptotically cngri(V)≈ank, for some a≠0. Furthermore, V is minimal of polynomial growth nk if cngri(V) grows as nk and any proper subvariety of V has polynomial growth nt, with t<k. In this paper, we classify superalgebras with graded involution generating minimal varieties of quadratic growth.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2021.03.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra with involution ; Classification ; Codimension ; Graded involution ; Growth ; Linear algebra ; Polynomial identity ; Polynomials ; Superalgebra</subject><ispartof>Linear algebra and its applications, 2021-07, Vol.621, p.105-134</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jul 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-7e1d70085dbab4e2bed4bea94989f243d4050002773acc2aca1df3d42c25e62f3</citedby><cites>FETCH-LOGICAL-c325t-7e1d70085dbab4e2bed4bea94989f243d4050002773acc2aca1df3d42c25e62f3</cites><orcidid>0000-0003-4774-5483 ; 0000-0002-8891-3319 ; 0000-0002-9056-5624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ioppolo, A.</creatorcontrib><creatorcontrib>dos Santos, R.B.</creatorcontrib><creatorcontrib>Santos, M.L.O.</creatorcontrib><creatorcontrib>Vieira, A.C.</creatorcontrib><title>Superalgebras with graded involution: Classifying minimal varieties of quadratic growth</title><title>Linear algebra and its applications</title><description>Let V be a variety of superalgebras with graded involution and let cngri(V) be its sequence of ⁎-graded codimensions. We say that V has polynomial growth nk if asymptotically cngri(V)≈ank, for some a≠0. Furthermore, V is minimal of polynomial growth nk if cngri(V) grows as nk and any proper subvariety of V has polynomial growth nt, with t<k. In this paper, we classify superalgebras with graded involution generating minimal varieties of quadratic growth.</description><subject>Algebra with involution</subject><subject>Classification</subject><subject>Codimension</subject><subject>Graded involution</subject><subject>Growth</subject><subject>Linear algebra</subject><subject>Polynomial identity</subject><subject>Polynomials</subject><subject>Superalgebra</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_wLuC160nSdN2eiXDLxh4oeJlSJPTLaVrtyTd2L83Y157deDwPufjIeSWQkaBFvdt1imVMWA0A54BpWdkQquSp7QSxTmZALA85eVMXJIr71sAyEtgE_LzOW7QqW6JtVM-2duwSpZOGTSJ7XdDNwY79A_JvFPe2-Zg-2Wytr1dqy7ZKWcxWPTJ0CTbURmngtWRHvZhdU0uGtV5vPmrU_L98vw1f0sXH6_v86dFqjkTIS2RmhKgEqZWdY6sRpPXqGb5rJo1LOcmBxFvZWXJldZMaUVNE7tMM4EFa_iU3J3mbtywHdEH2Q6j6-NKyYQQRSWAs5iip5R2g_cOG7lx8Qd3kBTk0Z9sZfQnj_4kcBn9RebxxGA8f2fRSa8t9hqNdaiDNIP9h_4FOQV5iQ</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Ioppolo, A.</creator><creator>dos Santos, R.B.</creator><creator>Santos, M.L.O.</creator><creator>Vieira, A.C.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4774-5483</orcidid><orcidid>https://orcid.org/0000-0002-8891-3319</orcidid><orcidid>https://orcid.org/0000-0002-9056-5624</orcidid></search><sort><creationdate>20210715</creationdate><title>Superalgebras with graded involution: Classifying minimal varieties of quadratic growth</title><author>Ioppolo, A. ; dos Santos, R.B. ; Santos, M.L.O. ; Vieira, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7e1d70085dbab4e2bed4bea94989f243d4050002773acc2aca1df3d42c25e62f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra with involution</topic><topic>Classification</topic><topic>Codimension</topic><topic>Graded involution</topic><topic>Growth</topic><topic>Linear algebra</topic><topic>Polynomial identity</topic><topic>Polynomials</topic><topic>Superalgebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ioppolo, A.</creatorcontrib><creatorcontrib>dos Santos, R.B.</creatorcontrib><creatorcontrib>Santos, M.L.O.</creatorcontrib><creatorcontrib>Vieira, A.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ioppolo, A.</au><au>dos Santos, R.B.</au><au>Santos, M.L.O.</au><au>Vieira, A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superalgebras with graded involution: Classifying minimal varieties of quadratic growth</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>621</volume><spage>105</spage><epage>134</epage><pages>105-134</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let V be a variety of superalgebras with graded involution and let cngri(V) be its sequence of ⁎-graded codimensions. We say that V has polynomial growth nk if asymptotically cngri(V)≈ank, for some a≠0. Furthermore, V is minimal of polynomial growth nk if cngri(V) grows as nk and any proper subvariety of V has polynomial growth nt, with t<k. In this paper, we classify superalgebras with graded involution generating minimal varieties of quadratic growth.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2021.03.011</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-4774-5483</orcidid><orcidid>https://orcid.org/0000-0002-8891-3319</orcidid><orcidid>https://orcid.org/0000-0002-9056-5624</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2021-07, Vol.621, p.105-134 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2555685032 |
source | ScienceDirect Freedom Collection |
subjects | Algebra with involution Classification Codimension Graded involution Growth Linear algebra Polynomial identity Polynomials Superalgebra |
title | Superalgebras with graded involution: Classifying minimal varieties of quadratic growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superalgebras%20with%20graded%20involution:%20Classifying%20minimal%20varieties%20of%20quadratic%20growth&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Ioppolo,%20A.&rft.date=2021-07-15&rft.volume=621&rft.spage=105&rft.epage=134&rft.pages=105-134&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2021.03.011&rft_dat=%3Cproquest_cross%3E2555685032%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-7e1d70085dbab4e2bed4bea94989f243d4050002773acc2aca1df3d42c25e62f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555685032&rft_id=info:pmid/&rfr_iscdi=true |