Loading…
A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity
Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases...
Saved in:
Published in: | Nano research 2021-08, Vol.14 (8), p.2776-2782 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3 |
container_end_page | 2782 |
container_issue | 8 |
container_start_page | 2776 |
container_title | Nano research |
container_volume | 14 |
creator | Zhang, Shuai Chen, Gaoqiang Qu, Timing Wei, Jinquan Yan, Yufan Liu, Qu Zhou, Mengran Zhang, Gong Zhou, Zhaoxia Gao, Huan Yao, Dawei Zhang, Yuanwang Shi, Qingyu Zhang, Hua |
description | Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite. |
doi_str_mv | 10.1007/s12274-021-3284-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555785899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555785899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19U822Y5DL5gwI2uQ5rejh3bpCbpiP_ejFVceTf3cjjnXPgQuiT4mmBc3gRCaclzTEnOaMVzfoQWRMoqx2mOf29C-Sk6C2GHcUEJrxbobZVZt4c-0_00dHYacqN97WxmtXVxqiF8X8YNowtdhOyji69Z46a6hyYL0YPdJkHbJhs9BPD7JEMPJvrO6D4zzjaTid2-i5_n6KTVfYCLn71EL3e3z-uHfPN0_7hebXLDhIy5aFjD6qqlGEhL61KAFA0xTEvBTY1r3da8IJLjigrBC1YwjQsORJeyKEAAW6KruXf07n2CENXOTd6mlyolRFmJSsrkIrPLeBeCh1aNvhu0_1QEqwNTNTNViak6MFU8ZeicCclrt-D_mv8PfQEGJHuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555785899</pqid></control><display><type>article</type><title>A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity</title><source>Springer Nature</source><creator>Zhang, Shuai ; Chen, Gaoqiang ; Qu, Timing ; Wei, Jinquan ; Yan, Yufan ; Liu, Qu ; Zhou, Mengran ; Zhang, Gong ; Zhou, Zhaoxia ; Gao, Huan ; Yao, Dawei ; Zhang, Yuanwang ; Shi, Qingyu ; Zhang, Hua</creator><creatorcontrib>Zhang, Shuai ; Chen, Gaoqiang ; Qu, Timing ; Wei, Jinquan ; Yan, Yufan ; Liu, Qu ; Zhou, Mengran ; Zhang, Gong ; Zhou, Zhaoxia ; Gao, Huan ; Yao, Dawei ; Zhang, Yuanwang ; Shi, Qingyu ; Zhang, Hua</creatorcontrib><description>Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3284-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aluminum ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Bonding strength ; Carbon nanotubes ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrical conductivity ; Electrical resistivity ; Friction stir processing ; Grain boundaries ; Interface reactions ; Interfaces ; Materials Science ; Mechanical properties ; Metals ; Nanocomposites ; Nanotechnology ; Nanotubes ; Raman spectroscopy ; Research Article ; Tensile strength ; Transmission electron microscopy</subject><ispartof>Nano research, 2021-08, Vol.14 (8), p.2776-2782</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3</citedby><cites>FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Chen, Gaoqiang</creatorcontrib><creatorcontrib>Qu, Timing</creatorcontrib><creatorcontrib>Wei, Jinquan</creatorcontrib><creatorcontrib>Yan, Yufan</creatorcontrib><creatorcontrib>Liu, Qu</creatorcontrib><creatorcontrib>Zhou, Mengran</creatorcontrib><creatorcontrib>Zhang, Gong</creatorcontrib><creatorcontrib>Zhou, Zhaoxia</creatorcontrib><creatorcontrib>Gao, Huan</creatorcontrib><creatorcontrib>Yao, Dawei</creatorcontrib><creatorcontrib>Zhang, Yuanwang</creatorcontrib><creatorcontrib>Shi, Qingyu</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><title>A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite.</description><subject>Aluminum</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Bonding strength</subject><subject>Carbon nanotubes</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Friction stir processing</subject><subject>Grain boundaries</subject><subject>Interface reactions</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Raman spectroscopy</subject><subject>Research Article</subject><subject>Tensile strength</subject><subject>Transmission electron microscopy</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19U822Y5DL5gwI2uQ5rejh3bpCbpiP_ejFVceTf3cjjnXPgQuiT4mmBc3gRCaclzTEnOaMVzfoQWRMoqx2mOf29C-Sk6C2GHcUEJrxbobZVZt4c-0_00dHYacqN97WxmtXVxqiF8X8YNowtdhOyji69Z46a6hyYL0YPdJkHbJhs9BPD7JEMPJvrO6D4zzjaTid2-i5_n6KTVfYCLn71EL3e3z-uHfPN0_7hebXLDhIy5aFjD6qqlGEhL61KAFA0xTEvBTY1r3da8IJLjigrBC1YwjQsORJeyKEAAW6KruXf07n2CENXOTd6mlyolRFmJSsrkIrPLeBeCh1aNvhu0_1QEqwNTNTNViak6MFU8ZeicCclrt-D_mv8PfQEGJHuE</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhang, Shuai</creator><creator>Chen, Gaoqiang</creator><creator>Qu, Timing</creator><creator>Wei, Jinquan</creator><creator>Yan, Yufan</creator><creator>Liu, Qu</creator><creator>Zhou, Mengran</creator><creator>Zhang, Gong</creator><creator>Zhou, Zhaoxia</creator><creator>Gao, Huan</creator><creator>Yao, Dawei</creator><creator>Zhang, Yuanwang</creator><creator>Shi, Qingyu</creator><creator>Zhang, Hua</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210801</creationdate><title>A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity</title><author>Zhang, Shuai ; Chen, Gaoqiang ; Qu, Timing ; Wei, Jinquan ; Yan, Yufan ; Liu, Qu ; Zhou, Mengran ; Zhang, Gong ; Zhou, Zhaoxia ; Gao, Huan ; Yao, Dawei ; Zhang, Yuanwang ; Shi, Qingyu ; Zhang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Bonding strength</topic><topic>Carbon nanotubes</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Friction stir processing</topic><topic>Grain boundaries</topic><topic>Interface reactions</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Raman spectroscopy</topic><topic>Research Article</topic><topic>Tensile strength</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Chen, Gaoqiang</creatorcontrib><creatorcontrib>Qu, Timing</creatorcontrib><creatorcontrib>Wei, Jinquan</creatorcontrib><creatorcontrib>Yan, Yufan</creatorcontrib><creatorcontrib>Liu, Qu</creatorcontrib><creatorcontrib>Zhou, Mengran</creatorcontrib><creatorcontrib>Zhang, Gong</creatorcontrib><creatorcontrib>Zhou, Zhaoxia</creatorcontrib><creatorcontrib>Gao, Huan</creatorcontrib><creatorcontrib>Yao, Dawei</creatorcontrib><creatorcontrib>Zhang, Yuanwang</creatorcontrib><creatorcontrib>Shi, Qingyu</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuai</au><au>Chen, Gaoqiang</au><au>Qu, Timing</au><au>Wei, Jinquan</au><au>Yan, Yufan</au><au>Liu, Qu</au><au>Zhou, Mengran</au><au>Zhang, Gong</au><au>Zhou, Zhaoxia</au><au>Gao, Huan</au><au>Yao, Dawei</au><au>Zhang, Yuanwang</au><au>Shi, Qingyu</au><au>Zhang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>14</volume><issue>8</issue><spage>2776</spage><epage>2782</epage><pages>2776-2782</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3284-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2021-08, Vol.14 (8), p.2776-2782 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2555785899 |
source | Springer Nature |
subjects | Aluminum Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Bonding strength Carbon nanotubes Chemistry and Materials Science Condensed Matter Physics Electrical conductivity Electrical resistivity Friction stir processing Grain boundaries Interface reactions Interfaces Materials Science Mechanical properties Metals Nanocomposites Nanotechnology Nanotubes Raman spectroscopy Research Article Tensile strength Transmission electron microscopy |
title | A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20aluminum-carbon%20nanotubes%20nanocomposite%20with%20doubled%20strength%20and%20preserved%20electrical%20conductivity&rft.jtitle=Nano%20research&rft.au=Zhang,%20Shuai&rft.date=2021-08-01&rft.volume=14&rft.issue=8&rft.spage=2776&rft.epage=2782&rft.pages=2776-2782&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3284-4&rft_dat=%3Cproquest_cross%3E2555785899%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555785899&rft_id=info:pmid/&rfr_iscdi=true |