Loading…

A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity

Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2021-08, Vol.14 (8), p.2776-2782
Main Authors: Zhang, Shuai, Chen, Gaoqiang, Qu, Timing, Wei, Jinquan, Yan, Yufan, Liu, Qu, Zhou, Mengran, Zhang, Gong, Zhou, Zhaoxia, Gao, Huan, Yao, Dawei, Zhang, Yuanwang, Shi, Qingyu, Zhang, Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3
cites cdi_FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3
container_end_page 2782
container_issue 8
container_start_page 2776
container_title Nano research
container_volume 14
creator Zhang, Shuai
Chen, Gaoqiang
Qu, Timing
Wei, Jinquan
Yan, Yufan
Liu, Qu
Zhou, Mengran
Zhang, Gong
Zhou, Zhaoxia
Gao, Huan
Yao, Dawei
Zhang, Yuanwang
Shi, Qingyu
Zhang, Hua
description Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite.
doi_str_mv 10.1007/s12274-021-3284-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555785899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555785899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19U822Y5DL5gwI2uQ5rejh3bpCbpiP_ejFVceTf3cjjnXPgQuiT4mmBc3gRCaclzTEnOaMVzfoQWRMoqx2mOf29C-Sk6C2GHcUEJrxbobZVZt4c-0_00dHYacqN97WxmtXVxqiF8X8YNowtdhOyji69Z46a6hyYL0YPdJkHbJhs9BPD7JEMPJvrO6D4zzjaTid2-i5_n6KTVfYCLn71EL3e3z-uHfPN0_7hebXLDhIy5aFjD6qqlGEhL61KAFA0xTEvBTY1r3da8IJLjigrBC1YwjQsORJeyKEAAW6KruXf07n2CENXOTd6mlyolRFmJSsrkIrPLeBeCh1aNvhu0_1QEqwNTNTNViak6MFU8ZeicCclrt-D_mv8PfQEGJHuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555785899</pqid></control><display><type>article</type><title>A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity</title><source>Springer Nature</source><creator>Zhang, Shuai ; Chen, Gaoqiang ; Qu, Timing ; Wei, Jinquan ; Yan, Yufan ; Liu, Qu ; Zhou, Mengran ; Zhang, Gong ; Zhou, Zhaoxia ; Gao, Huan ; Yao, Dawei ; Zhang, Yuanwang ; Shi, Qingyu ; Zhang, Hua</creator><creatorcontrib>Zhang, Shuai ; Chen, Gaoqiang ; Qu, Timing ; Wei, Jinquan ; Yan, Yufan ; Liu, Qu ; Zhou, Mengran ; Zhang, Gong ; Zhou, Zhaoxia ; Gao, Huan ; Yao, Dawei ; Zhang, Yuanwang ; Shi, Qingyu ; Zhang, Hua</creatorcontrib><description>Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3284-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aluminum ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Bonding strength ; Carbon nanotubes ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrical conductivity ; Electrical resistivity ; Friction stir processing ; Grain boundaries ; Interface reactions ; Interfaces ; Materials Science ; Mechanical properties ; Metals ; Nanocomposites ; Nanotechnology ; Nanotubes ; Raman spectroscopy ; Research Article ; Tensile strength ; Transmission electron microscopy</subject><ispartof>Nano research, 2021-08, Vol.14 (8), p.2776-2782</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3</citedby><cites>FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Chen, Gaoqiang</creatorcontrib><creatorcontrib>Qu, Timing</creatorcontrib><creatorcontrib>Wei, Jinquan</creatorcontrib><creatorcontrib>Yan, Yufan</creatorcontrib><creatorcontrib>Liu, Qu</creatorcontrib><creatorcontrib>Zhou, Mengran</creatorcontrib><creatorcontrib>Zhang, Gong</creatorcontrib><creatorcontrib>Zhou, Zhaoxia</creatorcontrib><creatorcontrib>Gao, Huan</creatorcontrib><creatorcontrib>Yao, Dawei</creatorcontrib><creatorcontrib>Zhang, Yuanwang</creatorcontrib><creatorcontrib>Shi, Qingyu</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><title>A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite.</description><subject>Aluminum</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Bonding strength</subject><subject>Carbon nanotubes</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Friction stir processing</subject><subject>Grain boundaries</subject><subject>Interface reactions</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Raman spectroscopy</subject><subject>Research Article</subject><subject>Tensile strength</subject><subject>Transmission electron microscopy</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19U822Y5DL5gwI2uQ5rejh3bpCbpiP_ejFVceTf3cjjnXPgQuiT4mmBc3gRCaclzTEnOaMVzfoQWRMoqx2mOf29C-Sk6C2GHcUEJrxbobZVZt4c-0_00dHYacqN97WxmtXVxqiF8X8YNowtdhOyji69Z46a6hyYL0YPdJkHbJhs9BPD7JEMPJvrO6D4zzjaTid2-i5_n6KTVfYCLn71EL3e3z-uHfPN0_7hebXLDhIy5aFjD6qqlGEhL61KAFA0xTEvBTY1r3da8IJLjigrBC1YwjQsORJeyKEAAW6KruXf07n2CENXOTd6mlyolRFmJSsrkIrPLeBeCh1aNvhu0_1QEqwNTNTNViak6MFU8ZeicCclrt-D_mv8PfQEGJHuE</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhang, Shuai</creator><creator>Chen, Gaoqiang</creator><creator>Qu, Timing</creator><creator>Wei, Jinquan</creator><creator>Yan, Yufan</creator><creator>Liu, Qu</creator><creator>Zhou, Mengran</creator><creator>Zhang, Gong</creator><creator>Zhou, Zhaoxia</creator><creator>Gao, Huan</creator><creator>Yao, Dawei</creator><creator>Zhang, Yuanwang</creator><creator>Shi, Qingyu</creator><creator>Zhang, Hua</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210801</creationdate><title>A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity</title><author>Zhang, Shuai ; Chen, Gaoqiang ; Qu, Timing ; Wei, Jinquan ; Yan, Yufan ; Liu, Qu ; Zhou, Mengran ; Zhang, Gong ; Zhou, Zhaoxia ; Gao, Huan ; Yao, Dawei ; Zhang, Yuanwang ; Shi, Qingyu ; Zhang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Bonding strength</topic><topic>Carbon nanotubes</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Friction stir processing</topic><topic>Grain boundaries</topic><topic>Interface reactions</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Raman spectroscopy</topic><topic>Research Article</topic><topic>Tensile strength</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Chen, Gaoqiang</creatorcontrib><creatorcontrib>Qu, Timing</creatorcontrib><creatorcontrib>Wei, Jinquan</creatorcontrib><creatorcontrib>Yan, Yufan</creatorcontrib><creatorcontrib>Liu, Qu</creatorcontrib><creatorcontrib>Zhou, Mengran</creatorcontrib><creatorcontrib>Zhang, Gong</creatorcontrib><creatorcontrib>Zhou, Zhaoxia</creatorcontrib><creatorcontrib>Gao, Huan</creatorcontrib><creatorcontrib>Yao, Dawei</creatorcontrib><creatorcontrib>Zhang, Yuanwang</creatorcontrib><creatorcontrib>Shi, Qingyu</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuai</au><au>Chen, Gaoqiang</au><au>Qu, Timing</au><au>Wei, Jinquan</au><au>Yan, Yufan</au><au>Liu, Qu</au><au>Zhou, Mengran</au><au>Zhang, Gong</au><au>Zhou, Zhaoxia</au><au>Gao, Huan</au><au>Yao, Dawei</au><au>Zhang, Yuanwang</au><au>Shi, Qingyu</au><au>Zhang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>14</volume><issue>8</issue><spage>2776</spage><epage>2782</epage><pages>2776-2782</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Enhancing the mechanical strength of highly conductive pure metals usually causes significant reduction in their electrical conductivity. For example, introducing phase/matrix interfaces or more grain boundaries, are common and effective methods to strengthen metals. But it simultaneously increases the electron scattering at the interface, thus reducing the electrical conductivity. In this study, we demonstrate that pure aluminum (Al)/carbon nanotubes (CNTs) nanocomposites prepared by friction stir processing have successfully broken through these limitations. The yield strength and tensile strength of Al/CNTs nanocomposites have improved by 104.7% and 51.8% compared to pure Al, while the electrical conductivity remained comparable to that of pure Al. To explore the potential mechanisms, the interface between CNTs and Al was examined and characterized by transmission electron microscopy (TEM) and Raman spectroscopy. Little interfacial reaction compounds were present and no visible physical gaps were observed at CNTs and Al interfaces. We defined it as a clean and tightly bonded interface. Although the quantity of phase interface has increased, the electrical conductivity of the nanocomposite remains approximately unchanged. We attribute the preserved electrical conductivity to the clean and tightly bonded CNTs/Al interface in the nanocomposite.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3284-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2021-08, Vol.14 (8), p.2776-2782
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2555785899
source Springer Nature
subjects Aluminum
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Bonding strength
Carbon nanotubes
Chemistry and Materials Science
Condensed Matter Physics
Electrical conductivity
Electrical resistivity
Friction stir processing
Grain boundaries
Interface reactions
Interfaces
Materials Science
Mechanical properties
Metals
Nanocomposites
Nanotechnology
Nanotubes
Raman spectroscopy
Research Article
Tensile strength
Transmission electron microscopy
title A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20aluminum-carbon%20nanotubes%20nanocomposite%20with%20doubled%20strength%20and%20preserved%20electrical%20conductivity&rft.jtitle=Nano%20research&rft.au=Zhang,%20Shuai&rft.date=2021-08-01&rft.volume=14&rft.issue=8&rft.spage=2776&rft.epage=2782&rft.pages=2776-2782&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3284-4&rft_dat=%3Cproquest_cross%3E2555785899%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5d3d3b8f20e1f2b75e95d1c3a954cb0bafb461940825546363a064e1a7966e5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555785899&rft_id=info:pmid/&rfr_iscdi=true