Loading…
Research on High Temperature Protection Technology of Infrared Temperature Measuring Equipment in Space Environment
With the increasing complexity of spacecraft structure and thermal design, it is more difficult to implement surface temperature measurement technology, and the temperature measurement area tends to diverse. Therefore, there is an increasing demand for the application of non-contact temperature meas...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2020-06, Vol.512 (1), p.12167 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3597-1c51ab19bfd4f82871cee011168980ed89d3247450a062236fe70e9ac11b77aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3597-1c51ab19bfd4f82871cee011168980ed89d3247450a062236fe70e9ac11b77aa3 |
container_end_page | |
container_issue | 1 |
container_start_page | 12167 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 512 |
creator | Zeyuan, Liu Yonghong, Shang Xinming, Su Jing, Wen Boying, Lin |
description | With the increasing complexity of spacecraft structure and thermal design, it is more difficult to implement surface temperature measurement technology, and the temperature measurement area tends to diverse. Therefore, there is an increasing demand for the application of non-contact temperature measurement technology in spacecraft thermal test. This paper takes the application of infrared temperature measuring equipment in vacuum and high temperature environment as the research object, designs the thermal protection scheme and device of the equipment, and simulates and analyses the thermal protection of infrared temperature measuring equipment based on node network method. Through physical test, the device can effectively realize the thermal protection of equipment in vacuum and high temperature environment, and ensure that the equipment is in the normal working temperature range and its temperature measurement algorithm model is not affected, the accuracy of temperature measurement is better than ±2°C, which meets the use requirements in spacecraft thermal test. |
doi_str_mv | 10.1088/1755-1315/512/1/012167 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555857944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555857944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3597-1c51ab19bfd4f82871cee011168980ed89d3247450a062236fe70e9ac11b77aa3</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4soOKdfQQK--FKba5umfRSpbjBR3HwOWXrdOrakS1ph396WymQg-HTH3e_-Bz_PuwX6ADRNA-CM-RABCxiEAQQUQkj4mTc6Ls6PPeWX3pVzG0oTHkfZyHMf6FBatSZGk0m1WpMF7mq0smktkndrGlRN1e0WqNbabM3qQExJprq00mJxQr-idK2t9Irk-7aqd6gbUmkyr6VCkuuvyhrdD6-9i1JuHd781LH3-Zwvnib-7O1l-vQ481XEMu6DYiCXkC3LIi7TMOWgECkAJGmWUizSrIjCmMeMSpqEYZSUyClmUgEsOZcyGnt3Q25tzb5F14iNaa3uXoqQMZYynsVxRyUDpaxxzmIpalvtpD0IoKIXLHp3ovcoOsECxCC4O7wfDitT_ybn-fwEE3VRdmj4B_pP_jcovYqy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555857944</pqid></control><display><type>article</type><title>Research on High Temperature Protection Technology of Infrared Temperature Measuring Equipment in Space Environment</title><source>Publicly Available Content Database</source><creator>Zeyuan, Liu ; Yonghong, Shang ; Xinming, Su ; Jing, Wen ; Boying, Lin</creator><creatorcontrib>Zeyuan, Liu ; Yonghong, Shang ; Xinming, Su ; Jing, Wen ; Boying, Lin</creatorcontrib><description>With the increasing complexity of spacecraft structure and thermal design, it is more difficult to implement surface temperature measurement technology, and the temperature measurement area tends to diverse. Therefore, there is an increasing demand for the application of non-contact temperature measurement technology in spacecraft thermal test. This paper takes the application of infrared temperature measuring equipment in vacuum and high temperature environment as the research object, designs the thermal protection scheme and device of the equipment, and simulates and analyses the thermal protection of infrared temperature measuring equipment based on node network method. Through physical test, the device can effectively realize the thermal protection of equipment in vacuum and high temperature environment, and ensure that the equipment is in the normal working temperature range and its temperature measurement algorithm model is not affected, the accuracy of temperature measurement is better than ±2°C, which meets the use requirements in spacecraft thermal test.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/512/1/012167</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aerospace environments ; Algorithms ; High temperature ; High temperature environments ; Infrared analysis ; Physical tests ; Spacecraft ; Spacecraft structures ; Surface temperature ; Technology ; Temperature measurement ; Temperature requirements ; Thermal design ; Thermal protection ; Thermometers ; Vacuum</subject><ispartof>IOP conference series. Earth and environmental science, 2020-06, Vol.512 (1), p.12167</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3597-1c51ab19bfd4f82871cee011168980ed89d3247450a062236fe70e9ac11b77aa3</citedby><cites>FETCH-LOGICAL-c3597-1c51ab19bfd4f82871cee011168980ed89d3247450a062236fe70e9ac11b77aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2555857944?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Zeyuan, Liu</creatorcontrib><creatorcontrib>Yonghong, Shang</creatorcontrib><creatorcontrib>Xinming, Su</creatorcontrib><creatorcontrib>Jing, Wen</creatorcontrib><creatorcontrib>Boying, Lin</creatorcontrib><title>Research on High Temperature Protection Technology of Infrared Temperature Measuring Equipment in Space Environment</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>With the increasing complexity of spacecraft structure and thermal design, it is more difficult to implement surface temperature measurement technology, and the temperature measurement area tends to diverse. Therefore, there is an increasing demand for the application of non-contact temperature measurement technology in spacecraft thermal test. This paper takes the application of infrared temperature measuring equipment in vacuum and high temperature environment as the research object, designs the thermal protection scheme and device of the equipment, and simulates and analyses the thermal protection of infrared temperature measuring equipment based on node network method. Through physical test, the device can effectively realize the thermal protection of equipment in vacuum and high temperature environment, and ensure that the equipment is in the normal working temperature range and its temperature measurement algorithm model is not affected, the accuracy of temperature measurement is better than ±2°C, which meets the use requirements in spacecraft thermal test.</description><subject>Aerospace environments</subject><subject>Algorithms</subject><subject>High temperature</subject><subject>High temperature environments</subject><subject>Infrared analysis</subject><subject>Physical tests</subject><subject>Spacecraft</subject><subject>Spacecraft structures</subject><subject>Surface temperature</subject><subject>Technology</subject><subject>Temperature measurement</subject><subject>Temperature requirements</subject><subject>Thermal design</subject><subject>Thermal protection</subject><subject>Thermometers</subject><subject>Vacuum</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkFFLwzAQx4soOKdfQQK--FKba5umfRSpbjBR3HwOWXrdOrakS1ph396WymQg-HTH3e_-Bz_PuwX6ADRNA-CM-RABCxiEAQQUQkj4mTc6Ls6PPeWX3pVzG0oTHkfZyHMf6FBatSZGk0m1WpMF7mq0smktkndrGlRN1e0WqNbabM3qQExJprq00mJxQr-idK2t9Irk-7aqd6gbUmkyr6VCkuuvyhrdD6-9i1JuHd781LH3-Zwvnib-7O1l-vQ481XEMu6DYiCXkC3LIi7TMOWgECkAJGmWUizSrIjCmMeMSpqEYZSUyClmUgEsOZcyGnt3Q25tzb5F14iNaa3uXoqQMZYynsVxRyUDpaxxzmIpalvtpD0IoKIXLHp3ovcoOsECxCC4O7wfDitT_ybn-fwEE3VRdmj4B_pP_jcovYqy</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zeyuan, Liu</creator><creator>Yonghong, Shang</creator><creator>Xinming, Su</creator><creator>Jing, Wen</creator><creator>Boying, Lin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20200601</creationdate><title>Research on High Temperature Protection Technology of Infrared Temperature Measuring Equipment in Space Environment</title><author>Zeyuan, Liu ; Yonghong, Shang ; Xinming, Su ; Jing, Wen ; Boying, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3597-1c51ab19bfd4f82871cee011168980ed89d3247450a062236fe70e9ac11b77aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace environments</topic><topic>Algorithms</topic><topic>High temperature</topic><topic>High temperature environments</topic><topic>Infrared analysis</topic><topic>Physical tests</topic><topic>Spacecraft</topic><topic>Spacecraft structures</topic><topic>Surface temperature</topic><topic>Technology</topic><topic>Temperature measurement</topic><topic>Temperature requirements</topic><topic>Thermal design</topic><topic>Thermal protection</topic><topic>Thermometers</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeyuan, Liu</creatorcontrib><creatorcontrib>Yonghong, Shang</creatorcontrib><creatorcontrib>Xinming, Su</creatorcontrib><creatorcontrib>Jing, Wen</creatorcontrib><creatorcontrib>Boying, Lin</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeyuan, Liu</au><au>Yonghong, Shang</au><au>Xinming, Su</au><au>Jing, Wen</au><au>Boying, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on High Temperature Protection Technology of Infrared Temperature Measuring Equipment in Space Environment</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>512</volume><issue>1</issue><spage>12167</spage><pages>12167-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>With the increasing complexity of spacecraft structure and thermal design, it is more difficult to implement surface temperature measurement technology, and the temperature measurement area tends to diverse. Therefore, there is an increasing demand for the application of non-contact temperature measurement technology in spacecraft thermal test. This paper takes the application of infrared temperature measuring equipment in vacuum and high temperature environment as the research object, designs the thermal protection scheme and device of the equipment, and simulates and analyses the thermal protection of infrared temperature measuring equipment based on node network method. Through physical test, the device can effectively realize the thermal protection of equipment in vacuum and high temperature environment, and ensure that the equipment is in the normal working temperature range and its temperature measurement algorithm model is not affected, the accuracy of temperature measurement is better than ±2°C, which meets the use requirements in spacecraft thermal test.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/512/1/012167</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2020-06, Vol.512 (1), p.12167 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2555857944 |
source | Publicly Available Content Database |
subjects | Aerospace environments Algorithms High temperature High temperature environments Infrared analysis Physical tests Spacecraft Spacecraft structures Surface temperature Technology Temperature measurement Temperature requirements Thermal design Thermal protection Thermometers Vacuum |
title | Research on High Temperature Protection Technology of Infrared Temperature Measuring Equipment in Space Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20High%20Temperature%20Protection%20Technology%20of%20Infrared%20Temperature%20Measuring%20Equipment%20in%20Space%20Environment&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Zeyuan,%20Liu&rft.date=2020-06-01&rft.volume=512&rft.issue=1&rft.spage=12167&rft.pages=12167-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/512/1/012167&rft_dat=%3Cproquest_cross%3E2555857944%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3597-1c51ab19bfd4f82871cee011168980ed89d3247450a062236fe70e9ac11b77aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555857944&rft_id=info:pmid/&rfr_iscdi=true |