Loading…

Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations

We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of n...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-08, Vol.256 (5), p.689-702
Main Author: Slyusarchuk, V. Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3
cites cdi_FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3
container_end_page 702
container_issue 5
container_start_page 689
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 256
creator Slyusarchuk, V. Yu
description We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of nonlinear mechanics.
doi_str_mv 10.1007/s10958-021-05453-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555984820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555984820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOprLZJJZSqm1UKlYi8uQZjLtlDaZJjOCPr2pI7pzdS583znwA3BN8C3BWNxFggsuEaYEYZ5xhooTMCBcMCRFwU9TjwVFjInsHFzEuMVJyiUbgM_xodNt7V2EbxsfLVzYNkJfwYXfdf1eBwun7l2HWrsWLl1pA9RwEnzXHMEn3TS1W0c4jX7vQ7OpDWx9IubOomcd9N62yfjlX3zbP7wEZ5XeRXv1U4dg-TB-HT2i2XwyHd3PkKEsK1CZMczyHOeYk5UQmhtbWlytOGNluTKyFITyXEiC02ytkStTZabMs4ISnlclG4Kb_m4T_KGzsVVb3wWXXirKOS9kJilOFO0pE3yMwVaqCfVehw9FsDpmrPqMVcpYfWesiiSxXooJdmsb_k7_Y30BpK1_-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555984820</pqid></control><display><type>article</type><title>Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations</title><source>Springer Nature</source><creator>Slyusarchuk, V. Yu</creator><creatorcontrib>Slyusarchuk, V. Yu</creatorcontrib><description>We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of nonlinear mechanics.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05453-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Invariants ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Parameters</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-08, Vol.256 (5), p.689-702</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3</citedby><cites>FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Slyusarchuk, V. Yu</creatorcontrib><title>Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of nonlinear mechanics.</description><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOprLZJJZSqm1UKlYi8uQZjLtlDaZJjOCPr2pI7pzdS583znwA3BN8C3BWNxFggsuEaYEYZ5xhooTMCBcMCRFwU9TjwVFjInsHFzEuMVJyiUbgM_xodNt7V2EbxsfLVzYNkJfwYXfdf1eBwun7l2HWrsWLl1pA9RwEnzXHMEn3TS1W0c4jX7vQ7OpDWx9IubOomcd9N62yfjlX3zbP7wEZ5XeRXv1U4dg-TB-HT2i2XwyHd3PkKEsK1CZMczyHOeYk5UQmhtbWlytOGNluTKyFITyXEiC02ytkStTZabMs4ISnlclG4Kb_m4T_KGzsVVb3wWXXirKOS9kJilOFO0pE3yMwVaqCfVehw9FsDpmrPqMVcpYfWesiiSxXooJdmsb_k7_Y30BpK1_-g</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Slyusarchuk, V. Yu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations</title><author>Slyusarchuk, V. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slyusarchuk, V. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slyusarchuk, V. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>256</volume><issue>5</issue><spage>689</spage><epage>702</epage><pages>689-702</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of nonlinear mechanics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05453-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2021-08, Vol.256 (5), p.689-702
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2555984820
source Springer Nature
subjects Invariants
Mathematical analysis
Mathematics
Mathematics and Statistics
Parameters
title Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equations%20Whose%20Sets%20of%20Solutions%20are%20Invariant%20Under%20a%20Group%20of%20Mappings%20Isomorphic%20to%20a%20One-Parameter%20Group%20of%20Rotations&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Slyusarchuk,%20V.%20Yu&rft.date=2021-08-01&rft.volume=256&rft.issue=5&rft.spage=689&rft.epage=702&rft.pages=689-702&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05453-9&rft_dat=%3Cproquest_cross%3E2555984820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555984820&rft_id=info:pmid/&rfr_iscdi=true