Loading…
Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations
We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of n...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-08, Vol.256 (5), p.689-702 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3 |
container_end_page | 702 |
container_issue | 5 |
container_start_page | 689 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 256 |
creator | Slyusarchuk, V. Yu |
description | We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of nonlinear mechanics. |
doi_str_mv | 10.1007/s10958-021-05453-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555984820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555984820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOprLZJJZSqm1UKlYi8uQZjLtlDaZJjOCPr2pI7pzdS583znwA3BN8C3BWNxFggsuEaYEYZ5xhooTMCBcMCRFwU9TjwVFjInsHFzEuMVJyiUbgM_xodNt7V2EbxsfLVzYNkJfwYXfdf1eBwun7l2HWrsWLl1pA9RwEnzXHMEn3TS1W0c4jX7vQ7OpDWx9IubOomcd9N62yfjlX3zbP7wEZ5XeRXv1U4dg-TB-HT2i2XwyHd3PkKEsK1CZMczyHOeYk5UQmhtbWlytOGNluTKyFITyXEiC02ytkStTZabMs4ISnlclG4Kb_m4T_KGzsVVb3wWXXirKOS9kJilOFO0pE3yMwVaqCfVehw9FsDpmrPqMVcpYfWesiiSxXooJdmsb_k7_Y30BpK1_-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555984820</pqid></control><display><type>article</type><title>Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations</title><source>Springer Nature</source><creator>Slyusarchuk, V. Yu</creator><creatorcontrib>Slyusarchuk, V. Yu</creatorcontrib><description>We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of nonlinear mechanics.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05453-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Invariants ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Parameters</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-08, Vol.256 (5), p.689-702</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3</citedby><cites>FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Slyusarchuk, V. Yu</creatorcontrib><title>Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of nonlinear mechanics.</description><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOprLZJJZSqm1UKlYi8uQZjLtlDaZJjOCPr2pI7pzdS583znwA3BN8C3BWNxFggsuEaYEYZ5xhooTMCBcMCRFwU9TjwVFjInsHFzEuMVJyiUbgM_xodNt7V2EbxsfLVzYNkJfwYXfdf1eBwun7l2HWrsWLl1pA9RwEnzXHMEn3TS1W0c4jX7vQ7OpDWx9IubOomcd9N62yfjlX3zbP7wEZ5XeRXv1U4dg-TB-HT2i2XwyHd3PkKEsK1CZMczyHOeYk5UQmhtbWlytOGNluTKyFITyXEiC02ytkStTZabMs4ISnlclG4Kb_m4T_KGzsVVb3wWXXirKOS9kJilOFO0pE3yMwVaqCfVehw9FsDpmrPqMVcpYfWesiiSxXooJdmsb_k7_Y30BpK1_-g</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Slyusarchuk, V. Yu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations</title><author>Slyusarchuk, V. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slyusarchuk, V. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slyusarchuk, V. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>256</volume><issue>5</issue><spage>689</spage><epage>702</epage><pages>689-702</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We construct classes of systems of equations whose sets of solutions are invariant under a group of mappings isomorphic to a one-parameter group of rotations. It is shown that unbounded solutions of these systems are unstable. We also present the applications of obtained results to the problems of nonlinear mechanics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05453-9</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2021-08, Vol.256 (5), p.689-702 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2555984820 |
source | Springer Nature |
subjects | Invariants Mathematical analysis Mathematics Mathematics and Statistics Parameters |
title | Equations Whose Sets of Solutions are Invariant Under a Group of Mappings Isomorphic to a One-Parameter Group of Rotations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equations%20Whose%20Sets%20of%20Solutions%20are%20Invariant%20Under%20a%20Group%20of%20Mappings%20Isomorphic%20to%20a%20One-Parameter%20Group%20of%20Rotations&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Slyusarchuk,%20V.%20Yu&rft.date=2021-08-01&rft.volume=256&rft.issue=5&rft.spage=689&rft.epage=702&rft.pages=689-702&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05453-9&rft_dat=%3Cproquest_cross%3E2555984820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2349-d43036606051b77a5cede0fb533ddbc8d7125678103ddeec8bcf4cd6492156fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555984820&rft_id=info:pmid/&rfr_iscdi=true |