Loading…
A semi-implicit low-regularity integrator for Navier-Stokes equations
A new type of low-regularity integrator is proposed for Navier-Stokes equations, coupled with a stabilized finite element method in space. Unlike the other low-regularity integrators for nonlinear dispersive equations, which are all fully explicit in time, the proposed method is semi-implicit in tim...
Saved in:
Published in: | arXiv.org 2021-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Buyang Ma, Shu Schratz, Katharina |
description | A new type of low-regularity integrator is proposed for Navier-Stokes equations, coupled with a stabilized finite element method in space. Unlike the other low-regularity integrators for nonlinear dispersive equations, which are all fully explicit in time, the proposed method is semi-implicit in time in order to preserve the energy-decay structure of NS equations. First-order convergence of the proposed method is established independent of the viscosity coefficient \(\mu\), under weaker regularity conditions than other existing numerical methods, including the semi-implicit Euler method and classical exponential integrators. Numerical results show that the proposed method is more accurate than the semi-implicit Euler method in the viscous case \(\mu=O(1)\), and more accurate than the classical exponential integrator in the inviscid case \(\mu\rightarrow 0\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2556165042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556165042</sourcerecordid><originalsourceid>FETCH-proquest_journals_25561650423</originalsourceid><addsrcrecordid>eNqNjbEKwjAURYMgWLT_EHAOpElbXUUqTi66lyCv5bVp0yYvin9vBz_A4XKGc-CuWKK0zsQxV2rD0hA6KaUqD6oodMKqEw8woMBhsvhE4ta9hYc2WuORPhxHgtYbcp43y27mheDFnVwPgcMcDaEbw46tG2MDpD9u2f5SPc5XMXk3RwhUdy76cVH1cltmZSFzpf-rvryoO3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556165042</pqid></control><display><type>article</type><title>A semi-implicit low-regularity integrator for Navier-Stokes equations</title><source>Publicly Available Content Database</source><creator>Li, Buyang ; Ma, Shu ; Schratz, Katharina</creator><creatorcontrib>Li, Buyang ; Ma, Shu ; Schratz, Katharina</creatorcontrib><description>A new type of low-regularity integrator is proposed for Navier-Stokes equations, coupled with a stabilized finite element method in space. Unlike the other low-regularity integrators for nonlinear dispersive equations, which are all fully explicit in time, the proposed method is semi-implicit in time in order to preserve the energy-decay structure of NS equations. First-order convergence of the proposed method is established independent of the viscosity coefficient \(\mu\), under weaker regularity conditions than other existing numerical methods, including the semi-implicit Euler method and classical exponential integrators. Numerical results show that the proposed method is more accurate than the semi-implicit Euler method in the viscous case \(\mu=O(1)\), and more accurate than the classical exponential integrator in the inviscid case \(\mu\rightarrow 0\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computational fluid dynamics ; Finite element method ; Fluid flow ; Integrators ; Mathematical analysis ; Navier-Stokes equations ; Numerical methods ; Regularity</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2556165042?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Li, Buyang</creatorcontrib><creatorcontrib>Ma, Shu</creatorcontrib><creatorcontrib>Schratz, Katharina</creatorcontrib><title>A semi-implicit low-regularity integrator for Navier-Stokes equations</title><title>arXiv.org</title><description>A new type of low-regularity integrator is proposed for Navier-Stokes equations, coupled with a stabilized finite element method in space. Unlike the other low-regularity integrators for nonlinear dispersive equations, which are all fully explicit in time, the proposed method is semi-implicit in time in order to preserve the energy-decay structure of NS equations. First-order convergence of the proposed method is established independent of the viscosity coefficient \(\mu\), under weaker regularity conditions than other existing numerical methods, including the semi-implicit Euler method and classical exponential integrators. Numerical results show that the proposed method is more accurate than the semi-implicit Euler method in the viscous case \(\mu=O(1)\), and more accurate than the classical exponential integrator in the inviscid case \(\mu\rightarrow 0\).</description><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Integrators</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Numerical methods</subject><subject>Regularity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjbEKwjAURYMgWLT_EHAOpElbXUUqTi66lyCv5bVp0yYvin9vBz_A4XKGc-CuWKK0zsQxV2rD0hA6KaUqD6oodMKqEw8woMBhsvhE4ta9hYc2WuORPhxHgtYbcp43y27mheDFnVwPgcMcDaEbw46tG2MDpD9u2f5SPc5XMXk3RwhUdy76cVH1cltmZSFzpf-rvryoO3o</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Li, Buyang</creator><creator>Ma, Shu</creator><creator>Schratz, Katharina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210728</creationdate><title>A semi-implicit low-regularity integrator for Navier-Stokes equations</title><author>Li, Buyang ; Ma, Shu ; Schratz, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25561650423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Integrators</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Numerical methods</topic><topic>Regularity</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Buyang</creatorcontrib><creatorcontrib>Ma, Shu</creatorcontrib><creatorcontrib>Schratz, Katharina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Buyang</au><au>Ma, Shu</au><au>Schratz, Katharina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A semi-implicit low-regularity integrator for Navier-Stokes equations</atitle><jtitle>arXiv.org</jtitle><date>2021-07-28</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>A new type of low-regularity integrator is proposed for Navier-Stokes equations, coupled with a stabilized finite element method in space. Unlike the other low-regularity integrators for nonlinear dispersive equations, which are all fully explicit in time, the proposed method is semi-implicit in time in order to preserve the energy-decay structure of NS equations. First-order convergence of the proposed method is established independent of the viscosity coefficient \(\mu\), under weaker regularity conditions than other existing numerical methods, including the semi-implicit Euler method and classical exponential integrators. Numerical results show that the proposed method is more accurate than the semi-implicit Euler method in the viscous case \(\mu=O(1)\), and more accurate than the classical exponential integrator in the inviscid case \(\mu\rightarrow 0\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2556165042 |
source | Publicly Available Content Database |
subjects | Computational fluid dynamics Finite element method Fluid flow Integrators Mathematical analysis Navier-Stokes equations Numerical methods Regularity |
title | A semi-implicit low-regularity integrator for Navier-Stokes equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20semi-implicit%20low-regularity%20integrator%20for%20Navier-Stokes%20equations&rft.jtitle=arXiv.org&rft.au=Li,%20Buyang&rft.date=2021-07-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2556165042%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25561650423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556165042&rft_id=info:pmid/&rfr_iscdi=true |