Loading…
The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1
The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is curr...
Saved in:
Published in: | Geoscientific Model Development 2021-07, Vol.14 (7), p.4781-4796 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3 |
container_end_page | 4796 |
container_issue | 7 |
container_start_page | 4781 |
container_title | Geoscientific Model Development |
container_volume | 14 |
creator | Wyser, Klaus Koenigk, Torben Fladrich, Uwe Fuentes-Franco, Ramon Karami, Mehdi Pasha Kruschke, Tim |
description | The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 ∘C. In SSP1-1.9 there is a probability of approximately 70 % to stay below 2 ∘C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members. |
doi_str_mv | 10.5194/gmd-14-4781-2021 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2556352388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670179125</galeid><doaj_id>oai_doaj_org_article_4db15aa5b9ec43ba94f5edf2c8867fe0</doaj_id><sourcerecordid>A670179125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3</originalsourceid><addsrcrecordid>eNptks2LE0EQxQdRcF29exzw4oIT-_vjGLLjbiAqmOC16e6pnkzIZGL3DKv__XY2ogakDlU8fvWoglcUbzGacazZx7ZvKswqJhWuCCL4WXGFtcaVFog-_2d-WbxKaYeQ0FLIq0JstlCuP98vy5WNLZT1IUHv9lC-P4nVqv6yvikfunFb1ouqtnHc0hmd4dfFi2D3Cd787tfF5lO9WdxXq693y8V8VXmO5Vg5QYlwJJBGugYDALZOOcot40pL0gQtFCMOPHYCqAoeBWUVcOqEFcHS62J5tm0GuzPH2PU2_jKD7cyTMMTW5JM6vwfDGoe5tdxp8Iw6q1ng0ATilRIyAMpeH85e6QGOk7twu-2-z5_c0mSwlojRjL8748c4_JggjWY3TPGQnzWEc0E5oUr9pVqbb-gOYRij9X2XvJkLibDUmPBMzf5D5Wqg7_xwgNBl_WLh5mIhMyP8HFs7pWSW62-XLDqzPg4pRQh_PsPInKJhcjQMZuYUDXOKBn0EmyGmZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556352388</pqid></control><display><type>article</type><title>The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1</title><source>Publicly Available Content Database</source><creator>Wyser, Klaus ; Koenigk, Torben ; Fladrich, Uwe ; Fuentes-Franco, Ramon ; Karami, Mehdi Pasha ; Kruschke, Tim</creator><creatorcontrib>Wyser, Klaus ; Koenigk, Torben ; Fladrich, Uwe ; Fuentes-Franco, Ramon ; Karami, Mehdi Pasha ; Kruschke, Tim</creatorcontrib><description>The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 ∘C. In SSP1-1.9 there is a probability of approximately 70 % to stay below 2 ∘C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-14-4781-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosols ; Analysis ; Atmosphere ; Climate change ; Climate models ; Emissions ; Global climate ; Global climate models ; Global warming ; Greenhouse gases ; Hydrology ; Lenses ; Mitigation ; Paris Agreement ; Precipitation ; Probability theory ; Radiative forcing ; Sea level ; Sea level pressure ; Simulation ; Surface temperature ; Time series ; Trends</subject><ispartof>Geoscientific Model Development, 2021-07, Vol.14 (7), p.4781-4796</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3</citedby><cites>FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3</cites><orcidid>0000-0002-3085-0175 ; 0000-0003-0390-2889 ; 0000-0002-1205-3754 ; 0000-0003-2051-743X ; 0000-0001-9752-3454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2556352388/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2556352388?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74873</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-197043$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wyser, Klaus</creatorcontrib><creatorcontrib>Koenigk, Torben</creatorcontrib><creatorcontrib>Fladrich, Uwe</creatorcontrib><creatorcontrib>Fuentes-Franco, Ramon</creatorcontrib><creatorcontrib>Karami, Mehdi Pasha</creatorcontrib><creatorcontrib>Kruschke, Tim</creatorcontrib><title>The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1</title><title>Geoscientific Model Development</title><description>The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 ∘C. In SSP1-1.9 there is a probability of approximately 70 % to stay below 2 ∘C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members.</description><subject>Aerosols</subject><subject>Analysis</subject><subject>Atmosphere</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Emissions</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Global warming</subject><subject>Greenhouse gases</subject><subject>Hydrology</subject><subject>Lenses</subject><subject>Mitigation</subject><subject>Paris Agreement</subject><subject>Precipitation</subject><subject>Probability theory</subject><subject>Radiative forcing</subject><subject>Sea level</subject><subject>Sea level pressure</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>Time series</subject><subject>Trends</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks2LE0EQxQdRcF29exzw4oIT-_vjGLLjbiAqmOC16e6pnkzIZGL3DKv__XY2ogakDlU8fvWoglcUbzGacazZx7ZvKswqJhWuCCL4WXGFtcaVFog-_2d-WbxKaYeQ0FLIq0JstlCuP98vy5WNLZT1IUHv9lC-P4nVqv6yvikfunFb1ouqtnHc0hmd4dfFi2D3Cd787tfF5lO9WdxXq693y8V8VXmO5Vg5QYlwJJBGugYDALZOOcot40pL0gQtFCMOPHYCqAoeBWUVcOqEFcHS62J5tm0GuzPH2PU2_jKD7cyTMMTW5JM6vwfDGoe5tdxp8Iw6q1ng0ATilRIyAMpeH85e6QGOk7twu-2-z5_c0mSwlojRjL8748c4_JggjWY3TPGQnzWEc0E5oUr9pVqbb-gOYRij9X2XvJkLibDUmPBMzf5D5Wqg7_xwgNBl_WLh5mIhMyP8HFs7pWSW62-XLDqzPg4pRQh_PsPInKJhcjQMZuYUDXOKBn0EmyGmZA</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Wyser, Klaus</creator><creator>Koenigk, Torben</creator><creator>Fladrich, Uwe</creator><creator>Fuentes-Franco, Ramon</creator><creator>Karami, Mehdi Pasha</creator><creator>Kruschke, Tim</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3085-0175</orcidid><orcidid>https://orcid.org/0000-0003-0390-2889</orcidid><orcidid>https://orcid.org/0000-0002-1205-3754</orcidid><orcidid>https://orcid.org/0000-0003-2051-743X</orcidid><orcidid>https://orcid.org/0000-0001-9752-3454</orcidid></search><sort><creationdate>20210730</creationdate><title>The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1</title><author>Wyser, Klaus ; Koenigk, Torben ; Fladrich, Uwe ; Fuentes-Franco, Ramon ; Karami, Mehdi Pasha ; Kruschke, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Analysis</topic><topic>Atmosphere</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Emissions</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Global warming</topic><topic>Greenhouse gases</topic><topic>Hydrology</topic><topic>Lenses</topic><topic>Mitigation</topic><topic>Paris Agreement</topic><topic>Precipitation</topic><topic>Probability theory</topic><topic>Radiative forcing</topic><topic>Sea level</topic><topic>Sea level pressure</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wyser, Klaus</creatorcontrib><creatorcontrib>Koenigk, Torben</creatorcontrib><creatorcontrib>Fladrich, Uwe</creatorcontrib><creatorcontrib>Fuentes-Franco, Ramon</creatorcontrib><creatorcontrib>Karami, Mehdi Pasha</creatorcontrib><creatorcontrib>Kruschke, Tim</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wyser, Klaus</au><au>Koenigk, Torben</au><au>Fladrich, Uwe</au><au>Fuentes-Franco, Ramon</au><au>Karami, Mehdi Pasha</au><au>Kruschke, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1</atitle><jtitle>Geoscientific Model Development</jtitle><date>2021-07-30</date><risdate>2021</risdate><volume>14</volume><issue>7</issue><spage>4781</spage><epage>4796</epage><pages>4781-4796</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 ∘C. In SSP1-1.9 there is a probability of approximately 70 % to stay below 2 ∘C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-14-4781-2021</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3085-0175</orcidid><orcidid>https://orcid.org/0000-0003-0390-2889</orcidid><orcidid>https://orcid.org/0000-0002-1205-3754</orcidid><orcidid>https://orcid.org/0000-0003-2051-743X</orcidid><orcidid>https://orcid.org/0000-0001-9752-3454</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1991-9603 |
ispartof | Geoscientific Model Development, 2021-07, Vol.14 (7), p.4781-4796 |
issn | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
language | eng |
recordid | cdi_proquest_journals_2556352388 |
source | Publicly Available Content Database |
subjects | Aerosols Analysis Atmosphere Climate change Climate models Emissions Global climate Global climate models Global warming Greenhouse gases Hydrology Lenses Mitigation Paris Agreement Precipitation Probability theory Radiative forcing Sea level Sea level pressure Simulation Surface temperature Time series Trends |
title | The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SMHI%20Large%20Ensemble%20(SMHI-LENS)%20with%20EC-Earth3.3.1&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Wyser,%20Klaus&rft.date=2021-07-30&rft.volume=14&rft.issue=7&rft.spage=4781&rft.epage=4796&rft.pages=4781-4796&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-14-4781-2021&rft_dat=%3Cgale_doaj_%3EA670179125%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556352388&rft_id=info:pmid/&rft_galeid=A670179125&rfr_iscdi=true |