Loading…

The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1

The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is curr...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development 2021-07, Vol.14 (7), p.4781-4796
Main Authors: Wyser, Klaus, Koenigk, Torben, Fladrich, Uwe, Fuentes-Franco, Ramon, Karami, Mehdi Pasha, Kruschke, Tim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3
cites cdi_FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3
container_end_page 4796
container_issue 7
container_start_page 4781
container_title Geoscientific Model Development
container_volume 14
creator Wyser, Klaus
Koenigk, Torben
Fladrich, Uwe
Fuentes-Franco, Ramon
Karami, Mehdi Pasha
Kruschke, Tim
description The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 ∘C. In SSP1-1.9 there is a probability of approximately 70 % to stay below 2 ∘C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members.
doi_str_mv 10.5194/gmd-14-4781-2021
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2556352388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670179125</galeid><doaj_id>oai_doaj_org_article_4db15aa5b9ec43ba94f5edf2c8867fe0</doaj_id><sourcerecordid>A670179125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3</originalsourceid><addsrcrecordid>eNptks2LE0EQxQdRcF29exzw4oIT-_vjGLLjbiAqmOC16e6pnkzIZGL3DKv__XY2ogakDlU8fvWoglcUbzGacazZx7ZvKswqJhWuCCL4WXGFtcaVFog-_2d-WbxKaYeQ0FLIq0JstlCuP98vy5WNLZT1IUHv9lC-P4nVqv6yvikfunFb1ouqtnHc0hmd4dfFi2D3Cd787tfF5lO9WdxXq693y8V8VXmO5Vg5QYlwJJBGugYDALZOOcot40pL0gQtFCMOPHYCqAoeBWUVcOqEFcHS62J5tm0GuzPH2PU2_jKD7cyTMMTW5JM6vwfDGoe5tdxp8Iw6q1ng0ATilRIyAMpeH85e6QGOk7twu-2-z5_c0mSwlojRjL8748c4_JggjWY3TPGQnzWEc0E5oUr9pVqbb-gOYRij9X2XvJkLibDUmPBMzf5D5Wqg7_xwgNBl_WLh5mIhMyP8HFs7pWSW62-XLDqzPg4pRQh_PsPInKJhcjQMZuYUDXOKBn0EmyGmZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556352388</pqid></control><display><type>article</type><title>The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1</title><source>Publicly Available Content Database</source><creator>Wyser, Klaus ; Koenigk, Torben ; Fladrich, Uwe ; Fuentes-Franco, Ramon ; Karami, Mehdi Pasha ; Kruschke, Tim</creator><creatorcontrib>Wyser, Klaus ; Koenigk, Torben ; Fladrich, Uwe ; Fuentes-Franco, Ramon ; Karami, Mehdi Pasha ; Kruschke, Tim</creatorcontrib><description>The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 ∘C. In SSP1-1.9 there is a probability of approximately 70 % to stay below 2 ∘C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-14-4781-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosols ; Analysis ; Atmosphere ; Climate change ; Climate models ; Emissions ; Global climate ; Global climate models ; Global warming ; Greenhouse gases ; Hydrology ; Lenses ; Mitigation ; Paris Agreement ; Precipitation ; Probability theory ; Radiative forcing ; Sea level ; Sea level pressure ; Simulation ; Surface temperature ; Time series ; Trends</subject><ispartof>Geoscientific Model Development, 2021-07, Vol.14 (7), p.4781-4796</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3</citedby><cites>FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3</cites><orcidid>0000-0002-3085-0175 ; 0000-0003-0390-2889 ; 0000-0002-1205-3754 ; 0000-0003-2051-743X ; 0000-0001-9752-3454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2556352388/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2556352388?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74873</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-197043$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wyser, Klaus</creatorcontrib><creatorcontrib>Koenigk, Torben</creatorcontrib><creatorcontrib>Fladrich, Uwe</creatorcontrib><creatorcontrib>Fuentes-Franco, Ramon</creatorcontrib><creatorcontrib>Karami, Mehdi Pasha</creatorcontrib><creatorcontrib>Kruschke, Tim</creatorcontrib><title>The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1</title><title>Geoscientific Model Development</title><description>The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 ∘C. In SSP1-1.9 there is a probability of approximately 70 % to stay below 2 ∘C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members.</description><subject>Aerosols</subject><subject>Analysis</subject><subject>Atmosphere</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Emissions</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Global warming</subject><subject>Greenhouse gases</subject><subject>Hydrology</subject><subject>Lenses</subject><subject>Mitigation</subject><subject>Paris Agreement</subject><subject>Precipitation</subject><subject>Probability theory</subject><subject>Radiative forcing</subject><subject>Sea level</subject><subject>Sea level pressure</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>Time series</subject><subject>Trends</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks2LE0EQxQdRcF29exzw4oIT-_vjGLLjbiAqmOC16e6pnkzIZGL3DKv__XY2ogakDlU8fvWoglcUbzGacazZx7ZvKswqJhWuCCL4WXGFtcaVFog-_2d-WbxKaYeQ0FLIq0JstlCuP98vy5WNLZT1IUHv9lC-P4nVqv6yvikfunFb1ouqtnHc0hmd4dfFi2D3Cd787tfF5lO9WdxXq693y8V8VXmO5Vg5QYlwJJBGugYDALZOOcot40pL0gQtFCMOPHYCqAoeBWUVcOqEFcHS62J5tm0GuzPH2PU2_jKD7cyTMMTW5JM6vwfDGoe5tdxp8Iw6q1ng0ATilRIyAMpeH85e6QGOk7twu-2-z5_c0mSwlojRjL8748c4_JggjWY3TPGQnzWEc0E5oUr9pVqbb-gOYRij9X2XvJkLibDUmPBMzf5D5Wqg7_xwgNBl_WLh5mIhMyP8HFs7pWSW62-XLDqzPg4pRQh_PsPInKJhcjQMZuYUDXOKBn0EmyGmZA</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Wyser, Klaus</creator><creator>Koenigk, Torben</creator><creator>Fladrich, Uwe</creator><creator>Fuentes-Franco, Ramon</creator><creator>Karami, Mehdi Pasha</creator><creator>Kruschke, Tim</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3085-0175</orcidid><orcidid>https://orcid.org/0000-0003-0390-2889</orcidid><orcidid>https://orcid.org/0000-0002-1205-3754</orcidid><orcidid>https://orcid.org/0000-0003-2051-743X</orcidid><orcidid>https://orcid.org/0000-0001-9752-3454</orcidid></search><sort><creationdate>20210730</creationdate><title>The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1</title><author>Wyser, Klaus ; Koenigk, Torben ; Fladrich, Uwe ; Fuentes-Franco, Ramon ; Karami, Mehdi Pasha ; Kruschke, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Analysis</topic><topic>Atmosphere</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Emissions</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Global warming</topic><topic>Greenhouse gases</topic><topic>Hydrology</topic><topic>Lenses</topic><topic>Mitigation</topic><topic>Paris Agreement</topic><topic>Precipitation</topic><topic>Probability theory</topic><topic>Radiative forcing</topic><topic>Sea level</topic><topic>Sea level pressure</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wyser, Klaus</creatorcontrib><creatorcontrib>Koenigk, Torben</creatorcontrib><creatorcontrib>Fladrich, Uwe</creatorcontrib><creatorcontrib>Fuentes-Franco, Ramon</creatorcontrib><creatorcontrib>Karami, Mehdi Pasha</creatorcontrib><creatorcontrib>Kruschke, Tim</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wyser, Klaus</au><au>Koenigk, Torben</au><au>Fladrich, Uwe</au><au>Fuentes-Franco, Ramon</au><au>Karami, Mehdi Pasha</au><au>Kruschke, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1</atitle><jtitle>Geoscientific Model Development</jtitle><date>2021-07-30</date><risdate>2021</risdate><volume>14</volume><issue>7</issue><spage>4781</spage><epage>4796</epage><pages>4781-4796</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 ∘C. In SSP1-1.9 there is a probability of approximately 70 % to stay below 2 ∘C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-14-4781-2021</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3085-0175</orcidid><orcidid>https://orcid.org/0000-0003-0390-2889</orcidid><orcidid>https://orcid.org/0000-0002-1205-3754</orcidid><orcidid>https://orcid.org/0000-0003-2051-743X</orcidid><orcidid>https://orcid.org/0000-0001-9752-3454</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1991-9603
ispartof Geoscientific Model Development, 2021-07, Vol.14 (7), p.4781-4796
issn 1991-9603
1991-959X
1991-962X
1991-9603
1991-962X
language eng
recordid cdi_proquest_journals_2556352388
source Publicly Available Content Database
subjects Aerosols
Analysis
Atmosphere
Climate change
Climate models
Emissions
Global climate
Global climate models
Global warming
Greenhouse gases
Hydrology
Lenses
Mitigation
Paris Agreement
Precipitation
Probability theory
Radiative forcing
Sea level
Sea level pressure
Simulation
Surface temperature
Time series
Trends
title The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SMHI%20Large%20Ensemble%20(SMHI-LENS)%20with%20EC-Earth3.3.1&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Wyser,%20Klaus&rft.date=2021-07-30&rft.volume=14&rft.issue=7&rft.spage=4781&rft.epage=4796&rft.pages=4781-4796&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-14-4781-2021&rft_dat=%3Cgale_doaj_%3EA670179125%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-b6326b2f2d7bd1eee1ab8b35a458972df96842bec1b6e38fc0f8a8e53b6a6fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556352388&rft_id=info:pmid/&rft_galeid=A670179125&rfr_iscdi=true