Loading…

Influence of hot end heat exchangers on cascading three pulse tube coolers

Hot end heat exchanger (HHX), an indispensable part in the traditional pulse tube cooler (PTC), rejects the heat generated by dissipation of the acoustic power. The acoustic power, which should have been dissipated at the phase shifters, is delivered to the latter stage cooler in the cascade PTC. Th...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2017-12, Vol.278 (1), p.12144
Main Authors: Zhao, Q Y, Wang, L Y, Gan, Z H, Sun, X, Chao, Y J, Li, S Z, Ren, S J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c354t-60095d62b4e7d5aa55c66ce0b8b647640aadab75f07ecabf4604eb0447a463793
container_end_page
container_issue 1
container_start_page 12144
container_title IOP conference series. Materials Science and Engineering
container_volume 278
creator Zhao, Q Y
Wang, L Y
Gan, Z H
Sun, X
Chao, Y J
Li, S Z
Ren, S J
description Hot end heat exchanger (HHX), an indispensable part in the traditional pulse tube cooler (PTC), rejects the heat generated by dissipation of the acoustic power. The acoustic power, which should have been dissipated at the phase shifters, is delivered to the latter stage cooler in the cascade PTC. Therefore, by removing the HHX, power loss could be decreased. Specifically, in our experiment, after removing HHXs, the cooling power obtained by cascading three PTCs could reach 273.2 W at 233 K under the same working condition, which is 23.6 W more than that of the original structure.
doi_str_mv 10.1088/1757-899X/278/1/012144
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556487194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556487194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-60095d62b4e7d5aa55c66ce0b8b647640aadab75f07ecabf4604eb0447a463793</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKdfQQK--FKXdJekfZQxdTLxQQXfQppe143Z1KQF_fZmVCaC4NPdJb_7H_wIOefsirMsm3AlVJLl-eskVXGaMJ5ygAMy2n8c7vuMH5OTEDaMSQXARuR-0VTbHhuL1FW0dh3FpqQ1mth82No0K_SBuoZaE6wp182KdrVHpG2_DUi7vkBqndtG6pQcVSY-nn3XMXm5mT_P7pLl4-1idr1M7FRAl0jGclHKtABUpTBGCCulRVZkhQQlgRlTmkKJiim0pqhAMsCCASgDcqry6ZhcDLmtd-89hk5vXO-beFKnQkjIFM8hUnKgrHcheKx069dvxn9qzvTOm94p0Ts9OnrTXA_e4uLlsLh27U_yw9P8F6bbsopo-gf6T_4XkFJ8kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556487194</pqid></control><display><type>article</type><title>Influence of hot end heat exchangers on cascading three pulse tube coolers</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Zhao, Q Y ; Wang, L Y ; Gan, Z H ; Sun, X ; Chao, Y J ; Li, S Z ; Ren, S J</creator><creatorcontrib>Zhao, Q Y ; Wang, L Y ; Gan, Z H ; Sun, X ; Chao, Y J ; Li, S Z ; Ren, S J</creatorcontrib><description>Hot end heat exchanger (HHX), an indispensable part in the traditional pulse tube cooler (PTC), rejects the heat generated by dissipation of the acoustic power. The acoustic power, which should have been dissipated at the phase shifters, is delivered to the latter stage cooler in the cascade PTC. Therefore, by removing the HHX, power loss could be decreased. Specifically, in our experiment, after removing HHXs, the cooling power obtained by cascading three PTCs could reach 273.2 W at 233 K under the same working condition, which is 23.6 W more than that of the original structure.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/278/1/012144</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coolers ; Heat exchangers ; Phase shifters ; Pulse tubes</subject><ispartof>IOP conference series. Materials Science and Engineering, 2017-12, Vol.278 (1), p.12144</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-60095d62b4e7d5aa55c66ce0b8b647640aadab75f07ecabf4604eb0447a463793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2556487194?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Zhao, Q Y</creatorcontrib><creatorcontrib>Wang, L Y</creatorcontrib><creatorcontrib>Gan, Z H</creatorcontrib><creatorcontrib>Sun, X</creatorcontrib><creatorcontrib>Chao, Y J</creatorcontrib><creatorcontrib>Li, S Z</creatorcontrib><creatorcontrib>Ren, S J</creatorcontrib><title>Influence of hot end heat exchangers on cascading three pulse tube coolers</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Hot end heat exchanger (HHX), an indispensable part in the traditional pulse tube cooler (PTC), rejects the heat generated by dissipation of the acoustic power. The acoustic power, which should have been dissipated at the phase shifters, is delivered to the latter stage cooler in the cascade PTC. Therefore, by removing the HHX, power loss could be decreased. Specifically, in our experiment, after removing HHXs, the cooling power obtained by cascading three PTCs could reach 273.2 W at 233 K under the same working condition, which is 23.6 W more than that of the original structure.</description><subject>Coolers</subject><subject>Heat exchangers</subject><subject>Phase shifters</subject><subject>Pulse tubes</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkFFLwzAQx4MoOKdfQQK--FKXdJekfZQxdTLxQQXfQppe143Z1KQF_fZmVCaC4NPdJb_7H_wIOefsirMsm3AlVJLl-eskVXGaMJ5ygAMy2n8c7vuMH5OTEDaMSQXARuR-0VTbHhuL1FW0dh3FpqQ1mth82No0K_SBuoZaE6wp182KdrVHpG2_DUi7vkBqndtG6pQcVSY-nn3XMXm5mT_P7pLl4-1idr1M7FRAl0jGclHKtABUpTBGCCulRVZkhQQlgRlTmkKJiim0pqhAMsCCASgDcqry6ZhcDLmtd-89hk5vXO-beFKnQkjIFM8hUnKgrHcheKx069dvxn9qzvTOm94p0Ts9OnrTXA_e4uLlsLh27U_yw9P8F6bbsopo-gf6T_4XkFJ8kA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Zhao, Q Y</creator><creator>Wang, L Y</creator><creator>Gan, Z H</creator><creator>Sun, X</creator><creator>Chao, Y J</creator><creator>Li, S Z</creator><creator>Ren, S J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171201</creationdate><title>Influence of hot end heat exchangers on cascading three pulse tube coolers</title><author>Zhao, Q Y ; Wang, L Y ; Gan, Z H ; Sun, X ; Chao, Y J ; Li, S Z ; Ren, S J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-60095d62b4e7d5aa55c66ce0b8b647640aadab75f07ecabf4604eb0447a463793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coolers</topic><topic>Heat exchangers</topic><topic>Phase shifters</topic><topic>Pulse tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Q Y</creatorcontrib><creatorcontrib>Wang, L Y</creatorcontrib><creatorcontrib>Gan, Z H</creatorcontrib><creatorcontrib>Sun, X</creatorcontrib><creatorcontrib>Chao, Y J</creatorcontrib><creatorcontrib>Li, S Z</creatorcontrib><creatorcontrib>Ren, S J</creatorcontrib><collection>IOP Journals (Institute Of Physics)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Q Y</au><au>Wang, L Y</au><au>Gan, Z H</au><au>Sun, X</au><au>Chao, Y J</au><au>Li, S Z</au><au>Ren, S J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of hot end heat exchangers on cascading three pulse tube coolers</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>278</volume><issue>1</issue><spage>12144</spage><pages>12144-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Hot end heat exchanger (HHX), an indispensable part in the traditional pulse tube cooler (PTC), rejects the heat generated by dissipation of the acoustic power. The acoustic power, which should have been dissipated at the phase shifters, is delivered to the latter stage cooler in the cascade PTC. Therefore, by removing the HHX, power loss could be decreased. Specifically, in our experiment, after removing HHXs, the cooling power obtained by cascading three PTCs could reach 273.2 W at 233 K under the same working condition, which is 23.6 W more than that of the original structure.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/278/1/012144</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2017-12, Vol.278 (1), p.12144
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2556487194
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest)
subjects Coolers
Heat exchangers
Phase shifters
Pulse tubes
title Influence of hot end heat exchangers on cascading three pulse tube coolers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20hot%20end%20heat%20exchangers%20on%20cascading%20three%20pulse%20tube%20coolers&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Zhao,%20Q%20Y&rft.date=2017-12-01&rft.volume=278&rft.issue=1&rft.spage=12144&rft.pages=12144-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/278/1/012144&rft_dat=%3Cproquest_cross%3E2556487194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-60095d62b4e7d5aa55c66ce0b8b647640aadab75f07ecabf4604eb0447a463793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556487194&rft_id=info:pmid/&rfr_iscdi=true