Loading…

Iterative methods for tomography problems: implementation to a cross-well tomography problem

The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are impleme...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2018-01, Vol.300 (1), p.12060
Main Authors: Karadeniz, M F, Weber, G W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413
container_end_page
container_issue 1
container_start_page 12060
container_title IOP conference series. Materials Science and Engineering
container_volume 300
creator Karadeniz, M F
Weber, G W
description The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.
doi_str_mv 10.1088/1757-899X/300/1/012060
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2556644162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556644162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413</originalsourceid><addsrcrecordid>eNqFkN9LwzAQx4MoOKf_ggR88aX2kjRp6psMfwwmPqjggxDaJnUd7VKTTtl_b2ZlIgx8uoP7fu6OD0KnBC4ISBmTlKeRzLKXmAHEJAZCQcAeGm0H-9tekkN05P0CQKRJAiP0Ou2Ny_v6w-DW9HOrPa6sw71t7ZvLu_kad84WjWn9Ja7bLjRm2Ye8XYYMznHprPfRp2maHcwxOqjyxpuTnzpGzzfXT5O7aPZwO51czaKS8aSPcio4k4IYKqGgUsuSJtqwvBAp5TplUBnIKg08K03BuBZFqXXJNBQZJTIhbIzOhr3h7vvK-F4t7Motw0lFORciSYigISWG1PfPzlSqc3Wbu7UioDYm1UaS2ghTwaQiajAZQDqAte1-N_8Lne-A7h-v_8RUpyv2BdrFhFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556644162</pqid></control><display><type>article</type><title>Iterative methods for tomography problems: implementation to a cross-well tomography problem</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Karadeniz, M F ; Weber, G W</creator><creatorcontrib>Karadeniz, M F ; Weber, G W</creatorcontrib><description>The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/300/1/012060</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Boreholes ; Image reconstruction ; Iterative methods ; Tomography ; Velocity distribution</subject><ispartof>IOP conference series. Materials Science and Engineering, 2018-01, Vol.300 (1), p.12060</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2556644162?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Karadeniz, M F</creatorcontrib><creatorcontrib>Weber, G W</creatorcontrib><title>Iterative methods for tomography problems: implementation to a cross-well tomography problem</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.</description><subject>Algorithms</subject><subject>Boreholes</subject><subject>Image reconstruction</subject><subject>Iterative methods</subject><subject>Tomography</subject><subject>Velocity distribution</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkN9LwzAQx4MoOKf_ggR88aX2kjRp6psMfwwmPqjggxDaJnUd7VKTTtl_b2ZlIgx8uoP7fu6OD0KnBC4ISBmTlKeRzLKXmAHEJAZCQcAeGm0H-9tekkN05P0CQKRJAiP0Ou2Ny_v6w-DW9HOrPa6sw71t7ZvLu_kad84WjWn9Ja7bLjRm2Ye8XYYMznHprPfRp2maHcwxOqjyxpuTnzpGzzfXT5O7aPZwO51czaKS8aSPcio4k4IYKqGgUsuSJtqwvBAp5TplUBnIKg08K03BuBZFqXXJNBQZJTIhbIzOhr3h7vvK-F4t7Motw0lFORciSYigISWG1PfPzlSqc3Wbu7UioDYm1UaS2ghTwaQiajAZQDqAte1-N_8Lne-A7h-v_8RUpyv2BdrFhFk</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Karadeniz, M F</creator><creator>Weber, G W</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180101</creationdate><title>Iterative methods for tomography problems: implementation to a cross-well tomography problem</title><author>Karadeniz, M F ; Weber, G W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Boreholes</topic><topic>Image reconstruction</topic><topic>Iterative methods</topic><topic>Tomography</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karadeniz, M F</creatorcontrib><creatorcontrib>Weber, G W</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karadeniz, M F</au><au>Weber, G W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative methods for tomography problems: implementation to a cross-well tomography problem</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>300</volume><issue>1</issue><spage>12060</spage><pages>12060-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/300/1/012060</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2018-01, Vol.300 (1), p.12060
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2556644162
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Algorithms
Boreholes
Image reconstruction
Iterative methods
Tomography
Velocity distribution
title Iterative methods for tomography problems: implementation to a cross-well tomography problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20methods%20for%20tomography%20problems:%20implementation%20to%20a%20cross-well%20tomography%20problem&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Karadeniz,%20M%20F&rft.date=2018-01-01&rft.volume=300&rft.issue=1&rft.spage=12060&rft.pages=12060-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/300/1/012060&rft_dat=%3Cproquest_iop_j%3E2556644162%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556644162&rft_id=info:pmid/&rfr_iscdi=true