Loading…
Iterative methods for tomography problems: implementation to a cross-well tomography problem
The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are impleme...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2018-01, Vol.300 (1), p.12060 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413 |
container_end_page | |
container_issue | 1 |
container_start_page | 12060 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 300 |
creator | Karadeniz, M F Weber, G W |
description | The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values. |
doi_str_mv | 10.1088/1757-899X/300/1/012060 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2556644162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556644162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413</originalsourceid><addsrcrecordid>eNqFkN9LwzAQx4MoOKf_ggR88aX2kjRp6psMfwwmPqjggxDaJnUd7VKTTtl_b2ZlIgx8uoP7fu6OD0KnBC4ISBmTlKeRzLKXmAHEJAZCQcAeGm0H-9tekkN05P0CQKRJAiP0Ou2Ny_v6w-DW9HOrPa6sw71t7ZvLu_kad84WjWn9Ja7bLjRm2Ye8XYYMznHprPfRp2maHcwxOqjyxpuTnzpGzzfXT5O7aPZwO51czaKS8aSPcio4k4IYKqGgUsuSJtqwvBAp5TplUBnIKg08K03BuBZFqXXJNBQZJTIhbIzOhr3h7vvK-F4t7Motw0lFORciSYigISWG1PfPzlSqc3Wbu7UioDYm1UaS2ghTwaQiajAZQDqAte1-N_8Lne-A7h-v_8RUpyv2BdrFhFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556644162</pqid></control><display><type>article</type><title>Iterative methods for tomography problems: implementation to a cross-well tomography problem</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Karadeniz, M F ; Weber, G W</creator><creatorcontrib>Karadeniz, M F ; Weber, G W</creatorcontrib><description>The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/300/1/012060</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Boreholes ; Image reconstruction ; Iterative methods ; Tomography ; Velocity distribution</subject><ispartof>IOP conference series. Materials Science and Engineering, 2018-01, Vol.300 (1), p.12060</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2556644162?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Karadeniz, M F</creatorcontrib><creatorcontrib>Weber, G W</creatorcontrib><title>Iterative methods for tomography problems: implementation to a cross-well tomography problem</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.</description><subject>Algorithms</subject><subject>Boreholes</subject><subject>Image reconstruction</subject><subject>Iterative methods</subject><subject>Tomography</subject><subject>Velocity distribution</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkN9LwzAQx4MoOKf_ggR88aX2kjRp6psMfwwmPqjggxDaJnUd7VKTTtl_b2ZlIgx8uoP7fu6OD0KnBC4ISBmTlKeRzLKXmAHEJAZCQcAeGm0H-9tekkN05P0CQKRJAiP0Ou2Ny_v6w-DW9HOrPa6sw71t7ZvLu_kad84WjWn9Ja7bLjRm2Ye8XYYMznHprPfRp2maHcwxOqjyxpuTnzpGzzfXT5O7aPZwO51czaKS8aSPcio4k4IYKqGgUsuSJtqwvBAp5TplUBnIKg08K03BuBZFqXXJNBQZJTIhbIzOhr3h7vvK-F4t7Motw0lFORciSYigISWG1PfPzlSqc3Wbu7UioDYm1UaS2ghTwaQiajAZQDqAte1-N_8Lne-A7h-v_8RUpyv2BdrFhFk</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Karadeniz, M F</creator><creator>Weber, G W</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180101</creationdate><title>Iterative methods for tomography problems: implementation to a cross-well tomography problem</title><author>Karadeniz, M F ; Weber, G W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Boreholes</topic><topic>Image reconstruction</topic><topic>Iterative methods</topic><topic>Tomography</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karadeniz, M F</creatorcontrib><creatorcontrib>Weber, G W</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karadeniz, M F</au><au>Weber, G W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative methods for tomography problems: implementation to a cross-well tomography problem</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>300</volume><issue>1</issue><spage>12060</spage><pages>12060-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz's algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/300/1/012060</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2018-01, Vol.300 (1), p.12060 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2556644162 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Algorithms Boreholes Image reconstruction Iterative methods Tomography Velocity distribution |
title | Iterative methods for tomography problems: implementation to a cross-well tomography problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20methods%20for%20tomography%20problems:%20implementation%20to%20a%20cross-well%20tomography%20problem&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Karadeniz,%20M%20F&rft.date=2018-01-01&rft.volume=300&rft.issue=1&rft.spage=12060&rft.pages=12060-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/300/1/012060&rft_dat=%3Cproquest_iop_j%3E2556644162%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-a2653861e280b28d8c24de3ab6725d730fe09fd059ceb35d6bcddc3d0b9218413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556644162&rft_id=info:pmid/&rfr_iscdi=true |