Loading…

Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations

We propose and analyze a class of robust, uniformly high-order accurate discontinuous Galerkin (DG) schemes for multidimensional relativistic magnetohydrodynamics (RMHD) on general meshes. A distinct feature of the schemes is their physical-constraint-preserving (PCP) property, i.e., they are proven...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik 2021-07, Vol.148 (3), p.699-741
Main Authors: Wu, Kailiang, Shu, Chi-Wang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-c2fb25f35bb9f2c84f0583e33afa7c1ae19690a75b89ba2c89f67ed152e6b6b73
cites cdi_FETCH-LOGICAL-c319t-c2fb25f35bb9f2c84f0583e33afa7c1ae19690a75b89ba2c89f67ed152e6b6b73
container_end_page 741
container_issue 3
container_start_page 699
container_title Numerische Mathematik
container_volume 148
creator Wu, Kailiang
Shu, Chi-Wang
description We propose and analyze a class of robust, uniformly high-order accurate discontinuous Galerkin (DG) schemes for multidimensional relativistic magnetohydrodynamics (RMHD) on general meshes. A distinct feature of the schemes is their physical-constraint-preserving (PCP) property, i.e., they are proven to preserve the subluminal constraint on the fluid velocity and the positivity of density, pressure, and internal energy. This is the first time that provably PCP high-order schemes are achieved for multidimensional RMHD. Developing PCP high-order schemes for RMHD is highly desirable but remains a challenging task, especially in the multidimensional cases, due to the inherent strong nonlinearity in the constraints and the effect of the magnetic divergence-free condition. Inspired by some crucial observations at the PDE level, we construct the provably PCP schemes by using the locally divergence-free DG schemes of the recently proposed symmetrizable RMHD equations as the base schemes, a limiting technique to enforce the PCP property of the DG solutions, and the strong-stability-preserving methods for time discretization. We rigorously prove the PCP property by using a novel “quasi-linearization” approach to handle the highly nonlinear physical constraints, technical splitting to offset the influence of divergence error, and sophisticated estimates to analyze the beneficial effect of the additional source term in the symmetrizable RMHD system. Several two-dimensional numerical examples are provided to further confirm the PCP property and to demonstrate the accuracy, effectiveness and robustness of the proposed PCP schemes.
doi_str_mv 10.1007/s00211-021-01209-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556869111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556869111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c2fb25f35bb9f2c84f0583e33afa7c1ae19690a75b89ba2c89f67ed152e6b6b73</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYsouK7-AU8Bz9EkbdrmKKvuCit6UPAW0jbZzdo2ayYt7L83WsGbl5lh5nuP4SXJJSXXlJDiBghhlOJYMKGMCJwdJTMiMo5TlvHjOBMmMBfi_TQ5A9gRQos8o7NkfPFuVFV7QPvtAWytWly7HoJXtg947zVoP9p-gxoL8RBsP7gB0FK12n_YHnU6bF0DyDiPuqENtrGd7sG6XrXI61YFO1oItkZPqzukP4e4iP7nyYlRLeiL3z5P3h7uXxcrvH5ePi5u17hOqQi4ZqZi3KS8qoRhdZkZwstUp6kyqqip0lTkgqiCV6WoVASEyQvdUM50XuVVkc6Tq8l3793noCHInRt8_A0k4zwvc0EpjRSbqNo7AK-N3HvbKX-QlMjvfOWUr4xF_uQrsyhKJxFEuN9o_2f9j-oLe0CBzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556869111</pqid></control><display><type>article</type><title>Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations</title><source>Springer Link</source><creator>Wu, Kailiang ; Shu, Chi-Wang</creator><creatorcontrib>Wu, Kailiang ; Shu, Chi-Wang</creatorcontrib><description>We propose and analyze a class of robust, uniformly high-order accurate discontinuous Galerkin (DG) schemes for multidimensional relativistic magnetohydrodynamics (RMHD) on general meshes. A distinct feature of the schemes is their physical-constraint-preserving (PCP) property, i.e., they are proven to preserve the subluminal constraint on the fluid velocity and the positivity of density, pressure, and internal energy. This is the first time that provably PCP high-order schemes are achieved for multidimensional RMHD. Developing PCP high-order schemes for RMHD is highly desirable but remains a challenging task, especially in the multidimensional cases, due to the inherent strong nonlinearity in the constraints and the effect of the magnetic divergence-free condition. Inspired by some crucial observations at the PDE level, we construct the provably PCP schemes by using the locally divergence-free DG schemes of the recently proposed symmetrizable RMHD equations as the base schemes, a limiting technique to enforce the PCP property of the DG solutions, and the strong-stability-preserving methods for time discretization. We rigorously prove the PCP property by using a novel “quasi-linearization” approach to handle the highly nonlinear physical constraints, technical splitting to offset the influence of divergence error, and sophisticated estimates to analyze the beneficial effect of the additional source term in the symmetrizable RMHD system. Several two-dimensional numerical examples are provided to further confirm the PCP property and to demonstrate the accuracy, effectiveness and robustness of the proposed PCP schemes.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-021-01209-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational fluid dynamics ; Divergence ; Error analysis ; Galerkin method ; Internal energy ; Magnetohydrodynamics ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Multidimensional methods ; Nonlinearity ; Numerical Analysis ; Numerical and Computational Physics ; Relativistic effects ; Robustness (mathematics) ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2021-07, Vol.148 (3), p.699-741</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c2fb25f35bb9f2c84f0583e33afa7c1ae19690a75b89ba2c89f67ed152e6b6b73</citedby><cites>FETCH-LOGICAL-c319t-c2fb25f35bb9f2c84f0583e33afa7c1ae19690a75b89ba2c89f67ed152e6b6b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wu, Kailiang</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><title>Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We propose and analyze a class of robust, uniformly high-order accurate discontinuous Galerkin (DG) schemes for multidimensional relativistic magnetohydrodynamics (RMHD) on general meshes. A distinct feature of the schemes is their physical-constraint-preserving (PCP) property, i.e., they are proven to preserve the subluminal constraint on the fluid velocity and the positivity of density, pressure, and internal energy. This is the first time that provably PCP high-order schemes are achieved for multidimensional RMHD. Developing PCP high-order schemes for RMHD is highly desirable but remains a challenging task, especially in the multidimensional cases, due to the inherent strong nonlinearity in the constraints and the effect of the magnetic divergence-free condition. Inspired by some crucial observations at the PDE level, we construct the provably PCP schemes by using the locally divergence-free DG schemes of the recently proposed symmetrizable RMHD equations as the base schemes, a limiting technique to enforce the PCP property of the DG solutions, and the strong-stability-preserving methods for time discretization. We rigorously prove the PCP property by using a novel “quasi-linearization” approach to handle the highly nonlinear physical constraints, technical splitting to offset the influence of divergence error, and sophisticated estimates to analyze the beneficial effect of the additional source term in the symmetrizable RMHD system. Several two-dimensional numerical examples are provided to further confirm the PCP property and to demonstrate the accuracy, effectiveness and robustness of the proposed PCP schemes.</description><subject>Computational fluid dynamics</subject><subject>Divergence</subject><subject>Error analysis</subject><subject>Galerkin method</subject><subject>Internal energy</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multidimensional methods</subject><subject>Nonlinearity</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Relativistic effects</subject><subject>Robustness (mathematics)</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYsouK7-AU8Bz9EkbdrmKKvuCit6UPAW0jbZzdo2ayYt7L83WsGbl5lh5nuP4SXJJSXXlJDiBghhlOJYMKGMCJwdJTMiMo5TlvHjOBMmMBfi_TQ5A9gRQos8o7NkfPFuVFV7QPvtAWytWly7HoJXtg947zVoP9p-gxoL8RBsP7gB0FK12n_YHnU6bF0DyDiPuqENtrGd7sG6XrXI61YFO1oItkZPqzukP4e4iP7nyYlRLeiL3z5P3h7uXxcrvH5ePi5u17hOqQi4ZqZi3KS8qoRhdZkZwstUp6kyqqip0lTkgqiCV6WoVASEyQvdUM50XuVVkc6Tq8l3793noCHInRt8_A0k4zwvc0EpjRSbqNo7AK-N3HvbKX-QlMjvfOWUr4xF_uQrsyhKJxFEuN9o_2f9j-oLe0CBzw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wu, Kailiang</creator><creator>Shu, Chi-Wang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations</title><author>Wu, Kailiang ; Shu, Chi-Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c2fb25f35bb9f2c84f0583e33afa7c1ae19690a75b89ba2c89f67ed152e6b6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Divergence</topic><topic>Error analysis</topic><topic>Galerkin method</topic><topic>Internal energy</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multidimensional methods</topic><topic>Nonlinearity</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Relativistic effects</topic><topic>Robustness (mathematics)</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Kailiang</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Kailiang</au><au>Shu, Chi-Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>148</volume><issue>3</issue><spage>699</spage><epage>741</epage><pages>699-741</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We propose and analyze a class of robust, uniformly high-order accurate discontinuous Galerkin (DG) schemes for multidimensional relativistic magnetohydrodynamics (RMHD) on general meshes. A distinct feature of the schemes is their physical-constraint-preserving (PCP) property, i.e., they are proven to preserve the subluminal constraint on the fluid velocity and the positivity of density, pressure, and internal energy. This is the first time that provably PCP high-order schemes are achieved for multidimensional RMHD. Developing PCP high-order schemes for RMHD is highly desirable but remains a challenging task, especially in the multidimensional cases, due to the inherent strong nonlinearity in the constraints and the effect of the magnetic divergence-free condition. Inspired by some crucial observations at the PDE level, we construct the provably PCP schemes by using the locally divergence-free DG schemes of the recently proposed symmetrizable RMHD equations as the base schemes, a limiting technique to enforce the PCP property of the DG solutions, and the strong-stability-preserving methods for time discretization. We rigorously prove the PCP property by using a novel “quasi-linearization” approach to handle the highly nonlinear physical constraints, technical splitting to offset the influence of divergence error, and sophisticated estimates to analyze the beneficial effect of the additional source term in the symmetrizable RMHD system. Several two-dimensional numerical examples are provided to further confirm the PCP property and to demonstrate the accuracy, effectiveness and robustness of the proposed PCP schemes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-021-01209-4</doi><tpages>43</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2021-07, Vol.148 (3), p.699-741
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2556869111
source Springer Link
subjects Computational fluid dynamics
Divergence
Error analysis
Galerkin method
Internal energy
Magnetohydrodynamics
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Multidimensional methods
Nonlinearity
Numerical Analysis
Numerical and Computational Physics
Relativistic effects
Robustness (mathematics)
Simulation
Theoretical
title Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Provably%20physical-constraint-preserving%20discontinuous%20Galerkin%20methods%20for%20multidimensional%20relativistic%20MHD%20equations&rft.jtitle=Numerische%20Mathematik&rft.au=Wu,%20Kailiang&rft.date=2021-07-01&rft.volume=148&rft.issue=3&rft.spage=699&rft.epage=741&rft.pages=699-741&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-021-01209-4&rft_dat=%3Cproquest_cross%3E2556869111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c2fb25f35bb9f2c84f0583e33afa7c1ae19690a75b89ba2c89f67ed152e6b6b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556869111&rft_id=info:pmid/&rfr_iscdi=true