Loading…
Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus
This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values duri...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2018-03, Vol.340 (1), p.12015 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-59b99cb9d81630be8decfa6ffde42dbbe5e526cc325724593115faa93baea65d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-59b99cb9d81630be8decfa6ffde42dbbe5e526cc325724593115faa93baea65d3 |
container_end_page | |
container_issue | 1 |
container_start_page | 12015 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 340 |
creator | Rosli, Anis Diyana Adenan, Nur Sabrina Hashim, Hadzli Abdullah, Noor Ezan Sulaiman, Suhaimi Baharudin, Rohaiza |
description | This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit's skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample's surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively. |
doi_str_mv | 10.1088/1757-899X/340/1/012015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556891799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556891799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-59b99cb9d81630be8decfa6ffde42dbbe5e526cc325724593115faa93baea65d3</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMoOKd_QQLeeDObtE3bXJbhF-xDNgXvQpomM6NtYtIh-uttqU4Ewau88JxzAg8A5xhdYZRlAU5JOskofQ6iGAU4QDhEmByA0R4c7u8MH4MT77cIJWkcoxEwubWVFrzVpoFGwQfuWi0qCddv3NVwaVtd648B59XGON2-1FAZ9410s4H5YgHnppQV1A1cSWE2zQBW2spGet8vT3Xrdv4UHCleeXn29Y7B08314_RuMlve3k_z2UTEKG0nhBaUioKWGU4iVMislELxRKlSxmFZFJJIEiZCRCFJw5jQCGOiOKdRwSVPSBmNwcWwa5153Unfsq3Zuab7koWEJBnFKaVdKhlSwhnvnVTMOl1z984wYr1c1ntjvUPWyWWYDXK7YjgUtbE_y_-WLv8ozdfXv2LMlir6BBXqizQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556891799</pqid></control><display><type>article</type><title>Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Rosli, Anis Diyana ; Adenan, Nur Sabrina ; Hashim, Hadzli ; Abdullah, Noor Ezan ; Sulaiman, Suhaimi ; Baharudin, Rohaiza</creator><creatorcontrib>Rosli, Anis Diyana ; Adenan, Nur Sabrina ; Hashim, Hadzli ; Abdullah, Noor Ezan ; Sulaiman, Suhaimi ; Baharudin, Rohaiza</creatorcontrib><description>This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit's skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample's surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/340/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Citrus fruits ; Model accuracy ; Nondestructive testing ; Particle swarm optimization ; Visible spectrum</subject><ispartof>IOP conference series. Materials Science and Engineering, 2018-03, Vol.340 (1), p.12015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-59b99cb9d81630be8decfa6ffde42dbbe5e526cc325724593115faa93baea65d3</citedby><cites>FETCH-LOGICAL-c407t-59b99cb9d81630be8decfa6ffde42dbbe5e526cc325724593115faa93baea65d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2556891799?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Rosli, Anis Diyana</creatorcontrib><creatorcontrib>Adenan, Nur Sabrina</creatorcontrib><creatorcontrib>Hashim, Hadzli</creatorcontrib><creatorcontrib>Abdullah, Noor Ezan</creatorcontrib><creatorcontrib>Sulaiman, Suhaimi</creatorcontrib><creatorcontrib>Baharudin, Rohaiza</creatorcontrib><title>Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit's skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample's surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Citrus fruits</subject><subject>Model accuracy</subject><subject>Nondestructive testing</subject><subject>Particle swarm optimization</subject><subject>Visible spectrum</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAYhYMoOKd_QQLeeDObtE3bXJbhF-xDNgXvQpomM6NtYtIh-uttqU4Ewau88JxzAg8A5xhdYZRlAU5JOskofQ6iGAU4QDhEmByA0R4c7u8MH4MT77cIJWkcoxEwubWVFrzVpoFGwQfuWi0qCddv3NVwaVtd648B59XGON2-1FAZ9410s4H5YgHnppQV1A1cSWE2zQBW2spGet8vT3Xrdv4UHCleeXn29Y7B08314_RuMlve3k_z2UTEKG0nhBaUioKWGU4iVMislELxRKlSxmFZFJJIEiZCRCFJw5jQCGOiOKdRwSVPSBmNwcWwa5153Unfsq3Zuab7koWEJBnFKaVdKhlSwhnvnVTMOl1z984wYr1c1ntjvUPWyWWYDXK7YjgUtbE_y_-WLv8ozdfXv2LMlir6BBXqizQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Rosli, Anis Diyana</creator><creator>Adenan, Nur Sabrina</creator><creator>Hashim, Hadzli</creator><creator>Abdullah, Noor Ezan</creator><creator>Sulaiman, Suhaimi</creator><creator>Baharudin, Rohaiza</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180301</creationdate><title>Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus</title><author>Rosli, Anis Diyana ; Adenan, Nur Sabrina ; Hashim, Hadzli ; Abdullah, Noor Ezan ; Sulaiman, Suhaimi ; Baharudin, Rohaiza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-59b99cb9d81630be8decfa6ffde42dbbe5e526cc325724593115faa93baea65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Citrus fruits</topic><topic>Model accuracy</topic><topic>Nondestructive testing</topic><topic>Particle swarm optimization</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosli, Anis Diyana</creatorcontrib><creatorcontrib>Adenan, Nur Sabrina</creatorcontrib><creatorcontrib>Hashim, Hadzli</creatorcontrib><creatorcontrib>Abdullah, Noor Ezan</creatorcontrib><creatorcontrib>Sulaiman, Suhaimi</creatorcontrib><creatorcontrib>Baharudin, Rohaiza</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosli, Anis Diyana</au><au>Adenan, Nur Sabrina</au><au>Hashim, Hadzli</au><au>Abdullah, Noor Ezan</au><au>Sulaiman, Suhaimi</au><au>Baharudin, Rohaiza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>340</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit's skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample's surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/340/1/012015</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2018-03, Vol.340 (1), p.12015 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2556891799 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial neural networks Citrus fruits Model accuracy Nondestructive testing Particle swarm optimization Visible spectrum |
title | Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Particle%20Swarm%20Optimization%20Algorithm%20for%20Optimizing%20ANN%20Model%20in%20Recognizing%20Ripeness%20of%20Citrus&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Rosli,%20Anis%20Diyana&rft.date=2018-03-01&rft.volume=340&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/340/1/012015&rft_dat=%3Cproquest_cross%3E2556891799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-59b99cb9d81630be8decfa6ffde42dbbe5e526cc325724593115faa93baea65d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556891799&rft_id=info:pmid/&rfr_iscdi=true |