Loading…

Sharp cohomological bound for uniformly quasiregularly elliptic manifolds

We show that if a compact, connected, and oriented $n$-manifold $M$ without boundary admits a non-constant non-injective uniformly quasiregular self-map, then the dimension of the real singular cohomology ring $H^*(M;\Bbb{R})$ of $M$ is bounded from above by $2^n$. This is a positive answer to a dyn...

Full description

Saved in:
Bibliographic Details
Published in:American journal of mathematics 2021-08, Vol.143 (4), p.1079-1113
Main Author: Kangasniemi, Ilmari
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-dd710e603ddb7d0e00b01d38e71c981c0e3d0ca2e027fb7fcbf6afb609211ad43
cites
container_end_page 1113
container_issue 4
container_start_page 1079
container_title American journal of mathematics
container_volume 143
creator Kangasniemi, Ilmari
description We show that if a compact, connected, and oriented $n$-manifold $M$ without boundary admits a non-constant non-injective uniformly quasiregular self-map, then the dimension of the real singular cohomology ring $H^*(M;\Bbb{R})$ of $M$ is bounded from above by $2^n$. This is a positive answer to a dynamical counterpart of the Bonk-Heinonen conjecture on the cohomology bound for quasiregularly elliptic manifolds. The proof is based on an intermediary result that, if $M$ is not a rational homology sphere, then each such uniformly quasiregular self-map on $M$ has a Julia set of positive Lebesgue measure.
doi_str_mv 10.1353/ajm.2021.0028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557064876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557064876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-dd710e603ddb7d0e00b01d38e71c981c0e3d0ca2e027fb7fcbf6afb609211ad43</originalsourceid><addsrcrecordid>eNpFkEFLwzAYhoMoOKdH7wXPnV-SrmmPMtQNBh6m4C2kSbq1pEuXNIf9exMmenp5Px7eDx6EHjEsMF3SZ9EPCwIELwBIdYVmGCrIS8rYNZpBvOU1JewW3XnfxwoMyAxtdgfhxkzagx2ssftOCpM1NhxV1lqXhWMXYzDn7BSE75zeByNcrNqYbpw6mQ0iIUb5e3TTCuP1w2_O0dfb6-dqnW8_3jerl20uKYYpV4ph0CVQpRqmQAM0gBWtNMOyrrAETRVIQTQQ1jaslU1birYpoSYYC1XQOXq67I7OnoL2E-9tcMf4kpPlkkFZVKyMVH6hpLPeO93y0XWDcGeOgSdbPNriyRZPtiJf_K32Wk5D8Pp_mNWsoozvktEklOAiCf2mP4WBbvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557064876</pqid></control><display><type>article</type><title>Sharp cohomological bound for uniformly quasiregularly elliptic manifolds</title><source>Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection</source><creator>Kangasniemi, Ilmari</creator><creatorcontrib>Kangasniemi, Ilmari</creatorcontrib><description>We show that if a compact, connected, and oriented $n$-manifold $M$ without boundary admits a non-constant non-injective uniformly quasiregular self-map, then the dimension of the real singular cohomology ring $H^*(M;\Bbb{R})$ of $M$ is bounded from above by $2^n$. This is a positive answer to a dynamical counterpart of the Bonk-Heinonen conjecture on the cohomology bound for quasiregularly elliptic manifolds. The proof is based on an intermediary result that, if $M$ is not a rational homology sphere, then each such uniformly quasiregular self-map on $M$ has a Julia set of positive Lebesgue measure.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2021.0028</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Homology</subject><ispartof>American journal of mathematics, 2021-08, Vol.143 (4), p.1079-1113</ispartof><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-dd710e603ddb7d0e00b01d38e71c981c0e3d0ca2e027fb7fcbf6afb609211ad43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kangasniemi, Ilmari</creatorcontrib><title>Sharp cohomological bound for uniformly quasiregularly elliptic manifolds</title><title>American journal of mathematics</title><description>We show that if a compact, connected, and oriented $n$-manifold $M$ without boundary admits a non-constant non-injective uniformly quasiregular self-map, then the dimension of the real singular cohomology ring $H^*(M;\Bbb{R})$ of $M$ is bounded from above by $2^n$. This is a positive answer to a dynamical counterpart of the Bonk-Heinonen conjecture on the cohomology bound for quasiregularly elliptic manifolds. The proof is based on an intermediary result that, if $M$ is not a rational homology sphere, then each such uniformly quasiregular self-map on $M$ has a Julia set of positive Lebesgue measure.</description><subject>Homology</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAYhoMoOKdH7wXPnV-SrmmPMtQNBh6m4C2kSbq1pEuXNIf9exMmenp5Px7eDx6EHjEsMF3SZ9EPCwIELwBIdYVmGCrIS8rYNZpBvOU1JewW3XnfxwoMyAxtdgfhxkzagx2ssftOCpM1NhxV1lqXhWMXYzDn7BSE75zeByNcrNqYbpw6mQ0iIUb5e3TTCuP1w2_O0dfb6-dqnW8_3jerl20uKYYpV4ph0CVQpRqmQAM0gBWtNMOyrrAETRVIQTQQ1jaslU1birYpoSYYC1XQOXq67I7OnoL2E-9tcMf4kpPlkkFZVKyMVH6hpLPeO93y0XWDcGeOgSdbPNriyRZPtiJf_K32Wk5D8Pp_mNWsoozvktEklOAiCf2mP4WBbvs</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Kangasniemi, Ilmari</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20210801</creationdate><title>Sharp cohomological bound for uniformly quasiregularly elliptic manifolds</title><author>Kangasniemi, Ilmari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-dd710e603ddb7d0e00b01d38e71c981c0e3d0ca2e027fb7fcbf6afb609211ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Homology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kangasniemi, Ilmari</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kangasniemi, Ilmari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp cohomological bound for uniformly quasiregularly elliptic manifolds</atitle><jtitle>American journal of mathematics</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>143</volume><issue>4</issue><spage>1079</spage><epage>1113</epage><pages>1079-1113</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>We show that if a compact, connected, and oriented $n$-manifold $M$ without boundary admits a non-constant non-injective uniformly quasiregular self-map, then the dimension of the real singular cohomology ring $H^*(M;\Bbb{R})$ of $M$ is bounded from above by $2^n$. This is a positive answer to a dynamical counterpart of the Bonk-Heinonen conjecture on the cohomology bound for quasiregularly elliptic manifolds. The proof is based on an intermediary result that, if $M$ is not a rational homology sphere, then each such uniformly quasiregular self-map on $M$ has a Julia set of positive Lebesgue measure.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2021.0028</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2021-08, Vol.143 (4), p.1079-1113
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_2557064876
source Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection
subjects Homology
title Sharp cohomological bound for uniformly quasiregularly elliptic manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20cohomological%20bound%20for%20uniformly%20quasiregularly%20elliptic%20manifolds&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Kangasniemi,%20Ilmari&rft.date=2021-08-01&rft.volume=143&rft.issue=4&rft.spage=1079&rft.epage=1113&rft.pages=1079-1113&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2021.0028&rft_dat=%3Cproquest_cross%3E2557064876%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-dd710e603ddb7d0e00b01d38e71c981c0e3d0ca2e027fb7fcbf6afb609211ad43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557064876&rft_id=info:pmid/&rfr_iscdi=true