Loading…
Bridge-Ship Collision Avoidance Control Based on AFSMC with a FRNN Estimator
For collision avoidance and maneuvering control in bridge areas, an adaptive fractional sliding mode control with fractional recurrent neural network (FRNN-AFSMC) is proposed. The uncertainties are estimated by FRNN, and the fractional gradient is adopted to improve the recurrent neural network (RNN...
Saved in:
Published in: | Mathematical problems in engineering 2021, Vol.2021, p.1-13 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For collision avoidance and maneuvering control in bridge areas, an adaptive fractional sliding mode control with fractional recurrent neural network (FRNN-AFSMC) is proposed. The uncertainties are estimated by FRNN, and the fractional gradient is adopted to improve the recurrent neural network (RNN). Its convergence has been proven. The influence of fractional order on algorithm performance is analyzed, and the simulation platform of ship collision avoidance control is built. Dynamic collision avoidance of multiple ships is simulated and verified. The results show the feasibility and effectiveness of dynamic autonomous collision avoidance motion control in a dynamic ocean environment. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/2026104 |