Loading…

Safest Route Detection via Danger Index Calculation and K-Means Clustering

The study aims to formulate a solution for identifying the safest route between any two inputted Geographical locations. Using the New York City dataset, which provides us with location tagged crime statistics; we are implementing different clustering algorithms and analysed the results comparativel...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua materials & continua, 2021, Vol.69 (2), p.2761-2777
Main Authors: Puthige, Isha, Bansal, Kartikay, Bindra, Chahat, Kapur, Mahekk, Singh, Dilbag, Kumar Mishra, Vipul, Aggarwal, Apeksha, Lee, Jinhee, Kang, Byeong-Gwon, Nam, Yunyoung, R. Mostafa, Reham
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-f5cbab0a427e31787f592d4fd239d7305d014df9e35b555297543cede9a8e9ff3
cites cdi_FETCH-LOGICAL-c313t-f5cbab0a427e31787f592d4fd239d7305d014df9e35b555297543cede9a8e9ff3
container_end_page 2777
container_issue 2
container_start_page 2761
container_title Computers, materials & continua
container_volume 69
creator Puthige, Isha
Bansal, Kartikay
Bindra, Chahat
Kapur, Mahekk
Singh, Dilbag
Kumar Mishra, Vipul
Aggarwal, Apeksha
Lee, Jinhee
Kang, Byeong-Gwon
Nam, Yunyoung
R. Mostafa, Reham
description The study aims to formulate a solution for identifying the safest route between any two inputted Geographical locations. Using the New York City dataset, which provides us with location tagged crime statistics; we are implementing different clustering algorithms and analysed the results comparatively to discover the best-suited one. The results unveil the fact that the K-Means algorithm best suits for our needs and delivered the best results. Moreover, a comparative analysis has been performed among various clustering techniques to obtain best results. we compared all the achieved results and using the conclusions we have developed a user-friendly application to provide safe route to users. The successful implementation would hopefully aid us to curb the ever-increasing crime rates; as it aims to provide the user with a before-hand knowledge of the route they are about to take. A warning that the path is marked high on danger index would convey the basic hint for the user to decide which path to prefer. Thus, addressing a social problem which needs to be eradicated from our modern era.
doi_str_mv 10.32604/cmc.2021.018128
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557143230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557143230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-f5cbab0a427e31787f592d4fd239d7305d014df9e35b555297543cede9a8e9ff3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw52iJc4rttfM4ovAqFCHxOFuuva5SpU6xEwT_ntBy4DQjzWh29RFyztkMRM7kpd3YmWCCzxgvuSgPyIQrmWdCiPzwnz8mJymtGYMcKjYhD6_GY-rpSzf0SK-xR9s3XaCfjaHXJqww0nlw-EVr09qhNbvQBEcfsyc0IdG6HVKPsQmrU3LkTZvw7E-n5P325q2-zxbPd_P6apFZ4NBnXtmlWTIjRYHAi7LwqhJOeiegcgUw5RiXzlcIaqmUElWhJFh0WJkSK-9hSi72u9vYfQzj83rdDTGMJ7VQquASBLCxxfYtG7uUInq9jc3GxG_Nmd4R0yMx_UtM74nBD582Xd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557143230</pqid></control><display><type>article</type><title>Safest Route Detection via Danger Index Calculation and K-Means Clustering</title><source>Publicly Available Content Database</source><creator>Puthige, Isha ; Bansal, Kartikay ; Bindra, Chahat ; Kapur, Mahekk ; Singh, Dilbag ; Kumar Mishra, Vipul ; Aggarwal, Apeksha ; Lee, Jinhee ; Kang, Byeong-Gwon ; Nam, Yunyoung ; R. Mostafa, Reham</creator><creatorcontrib>Puthige, Isha ; Bansal, Kartikay ; Bindra, Chahat ; Kapur, Mahekk ; Singh, Dilbag ; Kumar Mishra, Vipul ; Aggarwal, Apeksha ; Lee, Jinhee ; Kang, Byeong-Gwon ; Nam, Yunyoung ; R. Mostafa, Reham</creatorcontrib><description>The study aims to formulate a solution for identifying the safest route between any two inputted Geographical locations. Using the New York City dataset, which provides us with location tagged crime statistics; we are implementing different clustering algorithms and analysed the results comparatively to discover the best-suited one. The results unveil the fact that the K-Means algorithm best suits for our needs and delivered the best results. Moreover, a comparative analysis has been performed among various clustering techniques to obtain best results. we compared all the achieved results and using the conclusions we have developed a user-friendly application to provide safe route to users. The successful implementation would hopefully aid us to curb the ever-increasing crime rates; as it aims to provide the user with a before-hand knowledge of the route they are about to take. A warning that the path is marked high on danger index would convey the basic hint for the user to decide which path to prefer. Thus, addressing a social problem which needs to be eradicated from our modern era.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2021.018128</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Crime ; Criminal statistics ; Geographical locations ; Social problems ; Vector quantization</subject><ispartof>Computers, materials &amp; continua, 2021, Vol.69 (2), p.2761-2777</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-f5cbab0a427e31787f592d4fd239d7305d014df9e35b555297543cede9a8e9ff3</citedby><cites>FETCH-LOGICAL-c313t-f5cbab0a427e31787f592d4fd239d7305d014df9e35b555297543cede9a8e9ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2557143230?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Puthige, Isha</creatorcontrib><creatorcontrib>Bansal, Kartikay</creatorcontrib><creatorcontrib>Bindra, Chahat</creatorcontrib><creatorcontrib>Kapur, Mahekk</creatorcontrib><creatorcontrib>Singh, Dilbag</creatorcontrib><creatorcontrib>Kumar Mishra, Vipul</creatorcontrib><creatorcontrib>Aggarwal, Apeksha</creatorcontrib><creatorcontrib>Lee, Jinhee</creatorcontrib><creatorcontrib>Kang, Byeong-Gwon</creatorcontrib><creatorcontrib>Nam, Yunyoung</creatorcontrib><creatorcontrib>R. Mostafa, Reham</creatorcontrib><title>Safest Route Detection via Danger Index Calculation and K-Means Clustering</title><title>Computers, materials &amp; continua</title><description>The study aims to formulate a solution for identifying the safest route between any two inputted Geographical locations. Using the New York City dataset, which provides us with location tagged crime statistics; we are implementing different clustering algorithms and analysed the results comparatively to discover the best-suited one. The results unveil the fact that the K-Means algorithm best suits for our needs and delivered the best results. Moreover, a comparative analysis has been performed among various clustering techniques to obtain best results. we compared all the achieved results and using the conclusions we have developed a user-friendly application to provide safe route to users. The successful implementation would hopefully aid us to curb the ever-increasing crime rates; as it aims to provide the user with a before-hand knowledge of the route they are about to take. A warning that the path is marked high on danger index would convey the basic hint for the user to decide which path to prefer. Thus, addressing a social problem which needs to be eradicated from our modern era.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Crime</subject><subject>Criminal statistics</subject><subject>Geographical locations</subject><subject>Social problems</subject><subject>Vector quantization</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkEtPwzAQhC0EEqVw52iJc4rttfM4ovAqFCHxOFuuva5SpU6xEwT_ntBy4DQjzWh29RFyztkMRM7kpd3YmWCCzxgvuSgPyIQrmWdCiPzwnz8mJymtGYMcKjYhD6_GY-rpSzf0SK-xR9s3XaCfjaHXJqww0nlw-EVr09qhNbvQBEcfsyc0IdG6HVKPsQmrU3LkTZvw7E-n5P325q2-zxbPd_P6apFZ4NBnXtmlWTIjRYHAi7LwqhJOeiegcgUw5RiXzlcIaqmUElWhJFh0WJkSK-9hSi72u9vYfQzj83rdDTGMJ7VQquASBLCxxfYtG7uUInq9jc3GxG_Nmd4R0yMx_UtM74nBD582Xd4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Puthige, Isha</creator><creator>Bansal, Kartikay</creator><creator>Bindra, Chahat</creator><creator>Kapur, Mahekk</creator><creator>Singh, Dilbag</creator><creator>Kumar Mishra, Vipul</creator><creator>Aggarwal, Apeksha</creator><creator>Lee, Jinhee</creator><creator>Kang, Byeong-Gwon</creator><creator>Nam, Yunyoung</creator><creator>R. Mostafa, Reham</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2021</creationdate><title>Safest Route Detection via Danger Index Calculation and K-Means Clustering</title><author>Puthige, Isha ; Bansal, Kartikay ; Bindra, Chahat ; Kapur, Mahekk ; Singh, Dilbag ; Kumar Mishra, Vipul ; Aggarwal, Apeksha ; Lee, Jinhee ; Kang, Byeong-Gwon ; Nam, Yunyoung ; R. Mostafa, Reham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-f5cbab0a427e31787f592d4fd239d7305d014df9e35b555297543cede9a8e9ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Crime</topic><topic>Criminal statistics</topic><topic>Geographical locations</topic><topic>Social problems</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Puthige, Isha</creatorcontrib><creatorcontrib>Bansal, Kartikay</creatorcontrib><creatorcontrib>Bindra, Chahat</creatorcontrib><creatorcontrib>Kapur, Mahekk</creatorcontrib><creatorcontrib>Singh, Dilbag</creatorcontrib><creatorcontrib>Kumar Mishra, Vipul</creatorcontrib><creatorcontrib>Aggarwal, Apeksha</creatorcontrib><creatorcontrib>Lee, Jinhee</creatorcontrib><creatorcontrib>Kang, Byeong-Gwon</creatorcontrib><creatorcontrib>Nam, Yunyoung</creatorcontrib><creatorcontrib>R. Mostafa, Reham</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puthige, Isha</au><au>Bansal, Kartikay</au><au>Bindra, Chahat</au><au>Kapur, Mahekk</au><au>Singh, Dilbag</au><au>Kumar Mishra, Vipul</au><au>Aggarwal, Apeksha</au><au>Lee, Jinhee</au><au>Kang, Byeong-Gwon</au><au>Nam, Yunyoung</au><au>R. Mostafa, Reham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safest Route Detection via Danger Index Calculation and K-Means Clustering</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2021</date><risdate>2021</risdate><volume>69</volume><issue>2</issue><spage>2761</spage><epage>2777</epage><pages>2761-2777</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>The study aims to formulate a solution for identifying the safest route between any two inputted Geographical locations. Using the New York City dataset, which provides us with location tagged crime statistics; we are implementing different clustering algorithms and analysed the results comparatively to discover the best-suited one. The results unveil the fact that the K-Means algorithm best suits for our needs and delivered the best results. Moreover, a comparative analysis has been performed among various clustering techniques to obtain best results. we compared all the achieved results and using the conclusions we have developed a user-friendly application to provide safe route to users. The successful implementation would hopefully aid us to curb the ever-increasing crime rates; as it aims to provide the user with a before-hand knowledge of the route they are about to take. A warning that the path is marked high on danger index would convey the basic hint for the user to decide which path to prefer. Thus, addressing a social problem which needs to be eradicated from our modern era.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2021.018128</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2226
ispartof Computers, materials & continua, 2021, Vol.69 (2), p.2761-2777
issn 1546-2226
1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2557143230
source Publicly Available Content Database
subjects Algorithms
Cluster analysis
Clustering
Crime
Criminal statistics
Geographical locations
Social problems
Vector quantization
title Safest Route Detection via Danger Index Calculation and K-Means Clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safest%20Route%20Detection%20via%20Danger%20Index%20Calculation%20and%20K-Means%20Clustering&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Puthige,%20Isha&rft.date=2021&rft.volume=69&rft.issue=2&rft.spage=2761&rft.epage=2777&rft.pages=2761-2777&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2021.018128&rft_dat=%3Cproquest_cross%3E2557143230%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-f5cbab0a427e31787f592d4fd239d7305d014df9e35b555297543cede9a8e9ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557143230&rft_id=info:pmid/&rfr_iscdi=true