Loading…

Computer Geometries for Finding All Real Zeros of Polynomial Equations Simultaneously

In this research article, we construct a family of derivative free simultaneous numerical schemes to approximate all real zero of non-linear polynomial equation. We make a comparative analysis of the newly constructed numerical schemes with a well-known existing simultaneous method for determining a...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua materials & continua, 2021, Vol.69 (2), p.2635-2651
Main Authors: Rafiq, Naila, Akram, Saima, Shams, Mudassir, Ahmad Mir, Nazir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c243t-81b58929872c5416a145c2bb603d14430184ef07794370ff639f21fff3b040fa3
cites cdi_FETCH-LOGICAL-c243t-81b58929872c5416a145c2bb603d14430184ef07794370ff639f21fff3b040fa3
container_end_page 2651
container_issue 2
container_start_page 2635
container_title Computers, materials & continua
container_volume 69
creator Rafiq, Naila
Akram, Saima
Shams, Mudassir
Ahmad Mir, Nazir
description In this research article, we construct a family of derivative free simultaneous numerical schemes to approximate all real zero of non-linear polynomial equation. We make a comparative analysis of the newly constructed numerical schemes with a well-known existing simultaneous method for determining all the distinct real zeros of polynomial equations using computer algebra system Mat Lab. Lower bound of convergence of simultaneous schemes is calculated using Mathematica. Global convergence property of the numerical schemes is presented by taking random starting initial approximation and their convergence history are graphically presented. Some real life engineering applications along with some higher degree polynomials are considered as numerical test problems to show performance and efficiency of the derivative free family of numerical methods with comparison of an existing method of same order in literature. Local computational order of convergence, CPU time, graph of computational order of convergence and residual error graphs elaborate efficiency, robustness and authentication of the suggested family of numerical methods in its domain.
doi_str_mv 10.32604/cmc.2021.018955
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557143453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557143453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-81b58929872c5416a145c2bb603d14430184ef07794370ff639f21fff3b040fa3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwM1piTjl_5WOsorYgVQIBXVgsJ7WRKydO7WTof4-hDEzv9PR0d--H0D2BBaM58Me2axcUKFkAKSshLtCMCJ5nlNL88t98jW5iPACwnFUwQ7vad8M06oA32nd6DFZHbHzAa9vvbf-Fl87hN60c_tTBR-wNfvXu1PvOJm91nNRofR_xu-0mN6pe-ym60y26MspFffenc7Rbrz7qp2z7snmul9uspZyNWUkaUVa0KgvaCk5yRbhoadPkwPaEc5aacG2gKCrOCjAmvWwoMcawBjgYxebo4bx3CP446TjKg59Cn05KKkRBOOOCpRScU21qEIM2cgi2U-EkCchfeDLBkz_w5Bke-wanJmGl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557143453</pqid></control><display><type>article</type><title>Computer Geometries for Finding All Real Zeros of Polynomial Equations Simultaneously</title><source>Publicly Available Content (ProQuest)</source><creator>Rafiq, Naila ; Akram, Saima ; Shams, Mudassir ; Ahmad Mir, Nazir</creator><creatorcontrib>Rafiq, Naila ; Akram, Saima ; Shams, Mudassir ; Ahmad Mir, Nazir</creatorcontrib><description>In this research article, we construct a family of derivative free simultaneous numerical schemes to approximate all real zero of non-linear polynomial equation. We make a comparative analysis of the newly constructed numerical schemes with a well-known existing simultaneous method for determining all the distinct real zeros of polynomial equations using computer algebra system Mat Lab. Lower bound of convergence of simultaneous schemes is calculated using Mathematica. Global convergence property of the numerical schemes is presented by taking random starting initial approximation and their convergence history are graphically presented. Some real life engineering applications along with some higher degree polynomials are considered as numerical test problems to show performance and efficiency of the derivative free family of numerical methods with comparison of an existing method of same order in literature. Local computational order of convergence, CPU time, graph of computational order of convergence and residual error graphs elaborate efficiency, robustness and authentication of the suggested family of numerical methods in its domain.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2021.018955</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Computer algebra ; Convergence ; Lower bounds ; Mathematical analysis ; Numerical analysis ; Numerical methods ; Polynomials ; Robustness (mathematics)</subject><ispartof>Computers, materials &amp; continua, 2021, Vol.69 (2), p.2635-2651</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-81b58929872c5416a145c2bb603d14430184ef07794370ff639f21fff3b040fa3</citedby><cites>FETCH-LOGICAL-c243t-81b58929872c5416a145c2bb603d14430184ef07794370ff639f21fff3b040fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2557143453?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Rafiq, Naila</creatorcontrib><creatorcontrib>Akram, Saima</creatorcontrib><creatorcontrib>Shams, Mudassir</creatorcontrib><creatorcontrib>Ahmad Mir, Nazir</creatorcontrib><title>Computer Geometries for Finding All Real Zeros of Polynomial Equations Simultaneously</title><title>Computers, materials &amp; continua</title><description>In this research article, we construct a family of derivative free simultaneous numerical schemes to approximate all real zero of non-linear polynomial equation. We make a comparative analysis of the newly constructed numerical schemes with a well-known existing simultaneous method for determining all the distinct real zeros of polynomial equations using computer algebra system Mat Lab. Lower bound of convergence of simultaneous schemes is calculated using Mathematica. Global convergence property of the numerical schemes is presented by taking random starting initial approximation and their convergence history are graphically presented. Some real life engineering applications along with some higher degree polynomials are considered as numerical test problems to show performance and efficiency of the derivative free family of numerical methods with comparison of an existing method of same order in literature. Local computational order of convergence, CPU time, graph of computational order of convergence and residual error graphs elaborate efficiency, robustness and authentication of the suggested family of numerical methods in its domain.</description><subject>Computer algebra</subject><subject>Convergence</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Polynomials</subject><subject>Robustness (mathematics)</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwM1piTjl_5WOsorYgVQIBXVgsJ7WRKydO7WTof4-hDEzv9PR0d--H0D2BBaM58Me2axcUKFkAKSshLtCMCJ5nlNL88t98jW5iPACwnFUwQ7vad8M06oA32nd6DFZHbHzAa9vvbf-Fl87hN60c_tTBR-wNfvXu1PvOJm91nNRofR_xu-0mN6pe-ym60y26MspFffenc7Rbrz7qp2z7snmul9uspZyNWUkaUVa0KgvaCk5yRbhoadPkwPaEc5aacG2gKCrOCjAmvWwoMcawBjgYxebo4bx3CP446TjKg59Cn05KKkRBOOOCpRScU21qEIM2cgi2U-EkCchfeDLBkz_w5Bke-wanJmGl</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rafiq, Naila</creator><creator>Akram, Saima</creator><creator>Shams, Mudassir</creator><creator>Ahmad Mir, Nazir</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2021</creationdate><title>Computer Geometries for Finding All Real Zeros of Polynomial Equations Simultaneously</title><author>Rafiq, Naila ; Akram, Saima ; Shams, Mudassir ; Ahmad Mir, Nazir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-81b58929872c5416a145c2bb603d14430184ef07794370ff639f21fff3b040fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer algebra</topic><topic>Convergence</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Polynomials</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Rafiq, Naila</creatorcontrib><creatorcontrib>Akram, Saima</creatorcontrib><creatorcontrib>Shams, Mudassir</creatorcontrib><creatorcontrib>Ahmad Mir, Nazir</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafiq, Naila</au><au>Akram, Saima</au><au>Shams, Mudassir</au><au>Ahmad Mir, Nazir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Geometries for Finding All Real Zeros of Polynomial Equations Simultaneously</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2021</date><risdate>2021</risdate><volume>69</volume><issue>2</issue><spage>2635</spage><epage>2651</epage><pages>2635-2651</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>In this research article, we construct a family of derivative free simultaneous numerical schemes to approximate all real zero of non-linear polynomial equation. We make a comparative analysis of the newly constructed numerical schemes with a well-known existing simultaneous method for determining all the distinct real zeros of polynomial equations using computer algebra system Mat Lab. Lower bound of convergence of simultaneous schemes is calculated using Mathematica. Global convergence property of the numerical schemes is presented by taking random starting initial approximation and their convergence history are graphically presented. Some real life engineering applications along with some higher degree polynomials are considered as numerical test problems to show performance and efficiency of the derivative free family of numerical methods with comparison of an existing method of same order in literature. Local computational order of convergence, CPU time, graph of computational order of convergence and residual error graphs elaborate efficiency, robustness and authentication of the suggested family of numerical methods in its domain.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2021.018955</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2226
ispartof Computers, materials & continua, 2021, Vol.69 (2), p.2635-2651
issn 1546-2226
1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2557143453
source Publicly Available Content (ProQuest)
subjects Computer algebra
Convergence
Lower bounds
Mathematical analysis
Numerical analysis
Numerical methods
Polynomials
Robustness (mathematics)
title Computer Geometries for Finding All Real Zeros of Polynomial Equations Simultaneously
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Geometries%20for%20Finding%20All%20Real%20Zeros%20of%20Polynomial%20Equations%20Simultaneously&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Rafiq,%20Naila&rft.date=2021&rft.volume=69&rft.issue=2&rft.spage=2635&rft.epage=2651&rft.pages=2635-2651&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2021.018955&rft_dat=%3Cproquest_cross%3E2557143453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-81b58929872c5416a145c2bb603d14430184ef07794370ff639f21fff3b040fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557143453&rft_id=info:pmid/&rfr_iscdi=true