Loading…
Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment
— An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma t...
Saved in:
Published in: | Plasma physics reports 2021-07, Vol.47 (7), p.704-714 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043 |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043 |
container_end_page | 714 |
container_issue | 7 |
container_start_page | 704 |
container_title | Plasma physics reports |
container_volume | 47 |
creator | Elaissi, S. Alshunaifi, I. Alyousef, H. Ghiloufi, I. |
description | —
An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma torch. Two‑dimensional electro-thermodynamic distribution of electric, fluid flow, and heat transfer parameters in air plasma torch were implemented to examine the impact of the magnetic coupling on the electric arc. A parametric study of different torch geometries and operating conditions was discussed in order to optimize maximum advance in process stability, rate and deposition efficiency. Important results were achieved, showing that different arc lengths are observed by using different carrier gases. It is confirmed that a low current, a high-voltage DC, a low mass flow rate, and an intense swirl flow are responsible for maintaining the stable arc. In addition, axial velocity of fluid flow increases when reducing the inlet radius of the plasma torch and the arc attachment position is pushed to a longer distance with prolongated anode. |
doi_str_mv | 10.1134/S1063780X21070072 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557508461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557508461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek8cspWgrVBTaorvhdpK0U2YmNUkX_fdOGcGFuLoHzvnOhYPQLSX3lPL8YUGJ5EqTT0aJIkSxMzSiQrJMFlyf97q3s5N_ia5i3BFCqRZ0hKavsOls8tujCd4cO2jrCi_q9tBAqn2HvcPvDcQW8NKHaotX0RrsfMAfEJPFy2AhtbZL1-jCQRPtzc8do9Xz03Iyy-Zv05fJ4zyrWC5TptVacKcEgHOKFjkRXKnCGtCcFYYpo6W2UGlWrInhcs2500rkzCmpBZCcj9Hd0LsP_utgYyp3_hC6_mXJhFCC6FzSPkWHVBV8jMG6ch_qFsKxpKQ87VX-2atn2MDEPtttbPht_h_6BioZa6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557508461</pqid></control><display><type>article</type><title>Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment</title><source>Springer Nature</source><creator>Elaissi, S. ; Alshunaifi, I. ; Alyousef, H. ; Ghiloufi, I.</creator><creatorcontrib>Elaissi, S. ; Alshunaifi, I. ; Alyousef, H. ; Ghiloufi, I.</creatorcontrib><description>—
An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma torch. Two‑dimensional electro-thermodynamic distribution of electric, fluid flow, and heat transfer parameters in air plasma torch were implemented to examine the impact of the magnetic coupling on the electric arc. A parametric study of different torch geometries and operating conditions was discussed in order to optimize maximum advance in process stability, rate and deposition efficiency. Important results were achieved, showing that different arc lengths are observed by using different carrier gases. It is confirmed that a low current, a high-voltage DC, a low mass flow rate, and an intense swirl flow are responsible for maintaining the stable arc. In addition, axial velocity of fluid flow increases when reducing the inlet radius of the plasma torch and the arc attachment position is pushed to a longer distance with prolongated anode.</description><identifier>ISSN: 1063-780X</identifier><identifier>EISSN: 1562-6938</identifier><identifier>DOI: 10.1134/S1063780X21070072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Air plasma ; Arc deposition ; Atomic ; Carrier gases ; Computational fluid dynamics ; Direct current ; Fluid flow ; Low currents ; Magnetohydrodynamic simulation ; Mass flow rate ; Mathematical models ; Molecular ; Optical and Plasma Physics ; Optimization ; Physics ; Physics and Astronomy ; Plasma ; Plasma Dynamics ; Waste treatment</subject><ispartof>Plasma physics reports, 2021-07, Vol.47 (7), p.704-714</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1063-780X, Plasma Physics Reports, 2021, Vol. 47, No. 7, pp. 704–714. © Pleiades Publishing, Ltd., 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043</citedby><cites>FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Elaissi, S.</creatorcontrib><creatorcontrib>Alshunaifi, I.</creatorcontrib><creatorcontrib>Alyousef, H.</creatorcontrib><creatorcontrib>Ghiloufi, I.</creatorcontrib><title>Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment</title><title>Plasma physics reports</title><addtitle>Plasma Phys. Rep</addtitle><description>—
An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma torch. Two‑dimensional electro-thermodynamic distribution of electric, fluid flow, and heat transfer parameters in air plasma torch were implemented to examine the impact of the magnetic coupling on the electric arc. A parametric study of different torch geometries and operating conditions was discussed in order to optimize maximum advance in process stability, rate and deposition efficiency. Important results were achieved, showing that different arc lengths are observed by using different carrier gases. It is confirmed that a low current, a high-voltage DC, a low mass flow rate, and an intense swirl flow are responsible for maintaining the stable arc. In addition, axial velocity of fluid flow increases when reducing the inlet radius of the plasma torch and the arc attachment position is pushed to a longer distance with prolongated anode.</description><subject>Air plasma</subject><subject>Arc deposition</subject><subject>Atomic</subject><subject>Carrier gases</subject><subject>Computational fluid dynamics</subject><subject>Direct current</subject><subject>Fluid flow</subject><subject>Low currents</subject><subject>Magnetohydrodynamic simulation</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma Dynamics</subject><subject>Waste treatment</subject><issn>1063-780X</issn><issn>1562-6938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek8cspWgrVBTaorvhdpK0U2YmNUkX_fdOGcGFuLoHzvnOhYPQLSX3lPL8YUGJ5EqTT0aJIkSxMzSiQrJMFlyf97q3s5N_ia5i3BFCqRZ0hKavsOls8tujCd4cO2jrCi_q9tBAqn2HvcPvDcQW8NKHaotX0RrsfMAfEJPFy2AhtbZL1-jCQRPtzc8do9Xz03Iyy-Zv05fJ4zyrWC5TptVacKcEgHOKFjkRXKnCGtCcFYYpo6W2UGlWrInhcs2500rkzCmpBZCcj9Hd0LsP_utgYyp3_hC6_mXJhFCC6FzSPkWHVBV8jMG6ch_qFsKxpKQ87VX-2atn2MDEPtttbPht_h_6BioZa6Y</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Elaissi, S.</creator><creator>Alshunaifi, I.</creator><creator>Alyousef, H.</creator><creator>Ghiloufi, I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment</title><author>Elaissi, S. ; Alshunaifi, I. ; Alyousef, H. ; Ghiloufi, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air plasma</topic><topic>Arc deposition</topic><topic>Atomic</topic><topic>Carrier gases</topic><topic>Computational fluid dynamics</topic><topic>Direct current</topic><topic>Fluid flow</topic><topic>Low currents</topic><topic>Magnetohydrodynamic simulation</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma Dynamics</topic><topic>Waste treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elaissi, S.</creatorcontrib><creatorcontrib>Alshunaifi, I.</creatorcontrib><creatorcontrib>Alyousef, H.</creatorcontrib><creatorcontrib>Ghiloufi, I.</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma physics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elaissi, S.</au><au>Alshunaifi, I.</au><au>Alyousef, H.</au><au>Ghiloufi, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment</atitle><jtitle>Plasma physics reports</jtitle><stitle>Plasma Phys. Rep</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>47</volume><issue>7</issue><spage>704</spage><epage>714</epage><pages>704-714</pages><issn>1063-780X</issn><eissn>1562-6938</eissn><abstract>—
An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma torch. Two‑dimensional electro-thermodynamic distribution of electric, fluid flow, and heat transfer parameters in air plasma torch were implemented to examine the impact of the magnetic coupling on the electric arc. A parametric study of different torch geometries and operating conditions was discussed in order to optimize maximum advance in process stability, rate and deposition efficiency. Important results were achieved, showing that different arc lengths are observed by using different carrier gases. It is confirmed that a low current, a high-voltage DC, a low mass flow rate, and an intense swirl flow are responsible for maintaining the stable arc. In addition, axial velocity of fluid flow increases when reducing the inlet radius of the plasma torch and the arc attachment position is pushed to a longer distance with prolongated anode.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063780X21070072</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-780X |
ispartof | Plasma physics reports, 2021-07, Vol.47 (7), p.704-714 |
issn | 1063-780X 1562-6938 |
language | eng |
recordid | cdi_proquest_journals_2557508461 |
source | Springer Nature |
subjects | Air plasma Arc deposition Atomic Carrier gases Computational fluid dynamics Direct current Fluid flow Low currents Magnetohydrodynamic simulation Mass flow rate Mathematical models Molecular Optical and Plasma Physics Optimization Physics Physics and Astronomy Plasma Plasma Dynamics Waste treatment |
title | Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20Simulation%20of%20Plasma%20Torch%20Used%20for%20Waste%20Treatment&rft.jtitle=Plasma%20physics%20reports&rft.au=Elaissi,%20S.&rft.date=2021-07-01&rft.volume=47&rft.issue=7&rft.spage=704&rft.epage=714&rft.pages=704-714&rft.issn=1063-780X&rft.eissn=1562-6938&rft_id=info:doi/10.1134/S1063780X21070072&rft_dat=%3Cproquest_cross%3E2557508461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557508461&rft_id=info:pmid/&rfr_iscdi=true |