Loading…

Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment

— An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma t...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics reports 2021-07, Vol.47 (7), p.704-714
Main Authors: Elaissi, S., Alshunaifi, I., Alyousef, H., Ghiloufi, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043
cites cdi_FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043
container_end_page 714
container_issue 7
container_start_page 704
container_title Plasma physics reports
container_volume 47
creator Elaissi, S.
Alshunaifi, I.
Alyousef, H.
Ghiloufi, I.
description — An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma torch. Two‑dimensional electro-thermodynamic distribution of electric, fluid flow, and heat transfer parameters in air plasma torch were implemented to examine the impact of the magnetic coupling on the electric arc. A parametric study of different torch geometries and operating conditions was discussed in order to optimize maximum advance in process stability, rate and deposition efficiency. Important results were achieved, showing that different arc lengths are observed by using different carrier gases. It is confirmed that a low current, a high-voltage DC, a low mass flow rate, and an intense swirl flow are responsible for maintaining the stable arc. In addition, axial velocity of fluid flow increases when reducing the inlet radius of the plasma torch and the arc attachment position is pushed to a longer distance with prolongated anode.
doi_str_mv 10.1134/S1063780X21070072
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557508461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557508461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek8cspWgrVBTaorvhdpK0U2YmNUkX_fdOGcGFuLoHzvnOhYPQLSX3lPL8YUGJ5EqTT0aJIkSxMzSiQrJMFlyf97q3s5N_ia5i3BFCqRZ0hKavsOls8tujCd4cO2jrCi_q9tBAqn2HvcPvDcQW8NKHaotX0RrsfMAfEJPFy2AhtbZL1-jCQRPtzc8do9Xz03Iyy-Zv05fJ4zyrWC5TptVacKcEgHOKFjkRXKnCGtCcFYYpo6W2UGlWrInhcs2500rkzCmpBZCcj9Hd0LsP_utgYyp3_hC6_mXJhFCC6FzSPkWHVBV8jMG6ch_qFsKxpKQ87VX-2atn2MDEPtttbPht_h_6BioZa6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557508461</pqid></control><display><type>article</type><title>Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment</title><source>Springer Nature</source><creator>Elaissi, S. ; Alshunaifi, I. ; Alyousef, H. ; Ghiloufi, I.</creator><creatorcontrib>Elaissi, S. ; Alshunaifi, I. ; Alyousef, H. ; Ghiloufi, I.</creatorcontrib><description>— An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma torch. Two‑dimensional electro-thermodynamic distribution of electric, fluid flow, and heat transfer parameters in air plasma torch were implemented to examine the impact of the magnetic coupling on the electric arc. A parametric study of different torch geometries and operating conditions was discussed in order to optimize maximum advance in process stability, rate and deposition efficiency. Important results were achieved, showing that different arc lengths are observed by using different carrier gases. It is confirmed that a low current, a high-voltage DC, a low mass flow rate, and an intense swirl flow are responsible for maintaining the stable arc. In addition, axial velocity of fluid flow increases when reducing the inlet radius of the plasma torch and the arc attachment position is pushed to a longer distance with prolongated anode.</description><identifier>ISSN: 1063-780X</identifier><identifier>EISSN: 1562-6938</identifier><identifier>DOI: 10.1134/S1063780X21070072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Air plasma ; Arc deposition ; Atomic ; Carrier gases ; Computational fluid dynamics ; Direct current ; Fluid flow ; Low currents ; Magnetohydrodynamic simulation ; Mass flow rate ; Mathematical models ; Molecular ; Optical and Plasma Physics ; Optimization ; Physics ; Physics and Astronomy ; Plasma ; Plasma Dynamics ; Waste treatment</subject><ispartof>Plasma physics reports, 2021-07, Vol.47 (7), p.704-714</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1063-780X, Plasma Physics Reports, 2021, Vol. 47, No. 7, pp. 704–714. © Pleiades Publishing, Ltd., 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043</citedby><cites>FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Elaissi, S.</creatorcontrib><creatorcontrib>Alshunaifi, I.</creatorcontrib><creatorcontrib>Alyousef, H.</creatorcontrib><creatorcontrib>Ghiloufi, I.</creatorcontrib><title>Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment</title><title>Plasma physics reports</title><addtitle>Plasma Phys. Rep</addtitle><description>— An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma torch. Two‑dimensional electro-thermodynamic distribution of electric, fluid flow, and heat transfer parameters in air plasma torch were implemented to examine the impact of the magnetic coupling on the electric arc. A parametric study of different torch geometries and operating conditions was discussed in order to optimize maximum advance in process stability, rate and deposition efficiency. Important results were achieved, showing that different arc lengths are observed by using different carrier gases. It is confirmed that a low current, a high-voltage DC, a low mass flow rate, and an intense swirl flow are responsible for maintaining the stable arc. In addition, axial velocity of fluid flow increases when reducing the inlet radius of the plasma torch and the arc attachment position is pushed to a longer distance with prolongated anode.</description><subject>Air plasma</subject><subject>Arc deposition</subject><subject>Atomic</subject><subject>Carrier gases</subject><subject>Computational fluid dynamics</subject><subject>Direct current</subject><subject>Fluid flow</subject><subject>Low currents</subject><subject>Magnetohydrodynamic simulation</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma Dynamics</subject><subject>Waste treatment</subject><issn>1063-780X</issn><issn>1562-6938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek8cspWgrVBTaorvhdpK0U2YmNUkX_fdOGcGFuLoHzvnOhYPQLSX3lPL8YUGJ5EqTT0aJIkSxMzSiQrJMFlyf97q3s5N_ia5i3BFCqRZ0hKavsOls8tujCd4cO2jrCi_q9tBAqn2HvcPvDcQW8NKHaotX0RrsfMAfEJPFy2AhtbZL1-jCQRPtzc8do9Xz03Iyy-Zv05fJ4zyrWC5TptVacKcEgHOKFjkRXKnCGtCcFYYpo6W2UGlWrInhcs2500rkzCmpBZCcj9Hd0LsP_utgYyp3_hC6_mXJhFCC6FzSPkWHVBV8jMG6ch_qFsKxpKQ87VX-2atn2MDEPtttbPht_h_6BioZa6Y</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Elaissi, S.</creator><creator>Alshunaifi, I.</creator><creator>Alyousef, H.</creator><creator>Ghiloufi, I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment</title><author>Elaissi, S. ; Alshunaifi, I. ; Alyousef, H. ; Ghiloufi, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air plasma</topic><topic>Arc deposition</topic><topic>Atomic</topic><topic>Carrier gases</topic><topic>Computational fluid dynamics</topic><topic>Direct current</topic><topic>Fluid flow</topic><topic>Low currents</topic><topic>Magnetohydrodynamic simulation</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma Dynamics</topic><topic>Waste treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elaissi, S.</creatorcontrib><creatorcontrib>Alshunaifi, I.</creatorcontrib><creatorcontrib>Alyousef, H.</creatorcontrib><creatorcontrib>Ghiloufi, I.</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma physics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elaissi, S.</au><au>Alshunaifi, I.</au><au>Alyousef, H.</au><au>Ghiloufi, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment</atitle><jtitle>Plasma physics reports</jtitle><stitle>Plasma Phys. Rep</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>47</volume><issue>7</issue><spage>704</spage><epage>714</epage><pages>704-714</pages><issn>1063-780X</issn><eissn>1562-6938</eissn><abstract>— An accurate description of the direct current (DC) plasma torch using different carriers gases at atmospheric pressure is presented to provide operating conditions allowing an optimal design of plasma torch. A computational fluid dynamic (CFD) model was performed to simulate fluid flow in plasma torch. Two‑dimensional electro-thermodynamic distribution of electric, fluid flow, and heat transfer parameters in air plasma torch were implemented to examine the impact of the magnetic coupling on the electric arc. A parametric study of different torch geometries and operating conditions was discussed in order to optimize maximum advance in process stability, rate and deposition efficiency. Important results were achieved, showing that different arc lengths are observed by using different carrier gases. It is confirmed that a low current, a high-voltage DC, a low mass flow rate, and an intense swirl flow are responsible for maintaining the stable arc. In addition, axial velocity of fluid flow increases when reducing the inlet radius of the plasma torch and the arc attachment position is pushed to a longer distance with prolongated anode.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063780X21070072</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-780X
ispartof Plasma physics reports, 2021-07, Vol.47 (7), p.704-714
issn 1063-780X
1562-6938
language eng
recordid cdi_proquest_journals_2557508461
source Springer Nature
subjects Air plasma
Arc deposition
Atomic
Carrier gases
Computational fluid dynamics
Direct current
Fluid flow
Low currents
Magnetohydrodynamic simulation
Mass flow rate
Mathematical models
Molecular
Optical and Plasma Physics
Optimization
Physics
Physics and Astronomy
Plasma
Plasma Dynamics
Waste treatment
title Magnetohydrodynamic Simulation of Plasma Torch Used for Waste Treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20Simulation%20of%20Plasma%20Torch%20Used%20for%20Waste%20Treatment&rft.jtitle=Plasma%20physics%20reports&rft.au=Elaissi,%20S.&rft.date=2021-07-01&rft.volume=47&rft.issue=7&rft.spage=704&rft.epage=714&rft.pages=704-714&rft.issn=1063-780X&rft.eissn=1562-6938&rft_id=info:doi/10.1134/S1063780X21070072&rft_dat=%3Cproquest_cross%3E2557508461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-87b53f75aaff7194053779eda8329d27d868eac829b0d36b33f87542f7685a043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557508461&rft_id=info:pmid/&rfr_iscdi=true