Loading…
Limits on sub-GeV dark matter from the PROSPECT reactor antineutrino experiment
If dark matter has mass lower than around 1 GeV, it will not impart enough energy to cause detectable nuclear recoils in many direct-detection experiments. However, if dark matter is upscattered to high energy by collisions with cosmic rays, it may be detectable in both direct-detection experiments...
Saved in:
Published in: | Physical review. D 2021-07, Vol.104 (1), p.1 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | If dark matter has mass lower than around 1 GeV, it will not impart enough energy to cause detectable nuclear recoils in many direct-detection experiments. However, if dark matter is upscattered to high energy by collisions with cosmic rays, it may be detectable in both direct-detection experiments and neutrino experiments. We report the results of a dedicated search for boosted dark matter upscattered by cosmic rays, using ~14.6 solar days of data from the PROSPECT reactor antineutrino experiment. We show that such a flux of upscattered dark matter would display characteristic diurnal sidereal modulation, and use this to set new experimental constraints on sub-GeV dark matter exhibiting large interaction cross sections. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.104.012009 |