Loading…

Single-Channel EEG Based Arousal Level Estimation Using Multitaper Spectrum Estimation at Low-Power Wearable Devices

This paper proposes a novel lightweight method using the multitaper power spectrum to estimate arousal levels at wearable devices. We show that the spectral slope (1/f) of the electrophysiological power spectrum reflects the scale-free neural activity. To evaluate the proposed feature's perform...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-07
Main Authors: Berken Utku Demirel, Skelin, Ivan, Zhang, Haoxin, Lin, Jack J, Mohammad Abdullah Al Faruque
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Berken Utku Demirel
Skelin, Ivan
Zhang, Haoxin
Lin, Jack J
Mohammad Abdullah Al Faruque
description This paper proposes a novel lightweight method using the multitaper power spectrum to estimate arousal levels at wearable devices. We show that the spectral slope (1/f) of the electrophysiological power spectrum reflects the scale-free neural activity. To evaluate the proposed feature's performance, we used scalp EEG recorded during anesthesia and sleep with technician-scored Hypnogram annotations. It is shown that the proposed methodology discriminates wakefulness from reduced arousal solely based on the neurophysiological brain state with more than 80% accuracy. Therefore, our findings describe a common electrophysiological marker that tracks reduced arousal states, which can be applied to different applications (e.g., emotion detection, driver drowsiness). Evaluation on hardware shows that the proposed methodology can be implemented for devices with a minimum RAM of 512 KB with 55 mJ average energy consumption.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2557682160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557682160</sourcerecordid><originalsourceid>FETCH-proquest_journals_25576821603</originalsourceid><addsrcrecordid>eNqNjt8LAUEUhSelCP_DLc9ba5Zdr34sHiiFPG4XF6Mxs-bO8O9b5cGjp1Pf-U6dmmjKJOlFw76UDdFhvsVxLNNMDgZJU_iNMhdN0eSKxpCGPJ_DGJlOMHI2MGpY0vPD2as7emUN7LiawCporzyW5GBT0tG7cP-V0MPSvqK1fVXCntDhQRNM6amOxG1RP6Nm6nyzJbqzfDtZRKWzj0Dsi5sNzlRVUb3M0qHspXHyn_UGl-ZLlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557682160</pqid></control><display><type>article</type><title>Single-Channel EEG Based Arousal Level Estimation Using Multitaper Spectrum Estimation at Low-Power Wearable Devices</title><source>Publicly Available Content Database</source><creator>Berken Utku Demirel ; Skelin, Ivan ; Zhang, Haoxin ; Lin, Jack J ; Mohammad Abdullah Al Faruque</creator><creatorcontrib>Berken Utku Demirel ; Skelin, Ivan ; Zhang, Haoxin ; Lin, Jack J ; Mohammad Abdullah Al Faruque</creatorcontrib><description>This paper proposes a novel lightweight method using the multitaper power spectrum to estimate arousal levels at wearable devices. We show that the spectral slope (1/f) of the electrophysiological power spectrum reflects the scale-free neural activity. To evaluate the proposed feature's performance, we used scalp EEG recorded during anesthesia and sleep with technician-scored Hypnogram annotations. It is shown that the proposed methodology discriminates wakefulness from reduced arousal solely based on the neurophysiological brain state with more than 80% accuracy. Therefore, our findings describe a common electrophysiological marker that tracks reduced arousal states, which can be applied to different applications (e.g., emotion detection, driver drowsiness). Evaluation on hardware shows that the proposed methodology can be implemented for devices with a minimum RAM of 512 KB with 55 mJ average energy consumption.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anesthesia ; Annotations ; Arousal ; Driver fatigue ; Energy consumption ; Power management ; Wakefulness ; Wearable computers ; Wearable technology</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2557682160?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Berken Utku Demirel</creatorcontrib><creatorcontrib>Skelin, Ivan</creatorcontrib><creatorcontrib>Zhang, Haoxin</creatorcontrib><creatorcontrib>Lin, Jack J</creatorcontrib><creatorcontrib>Mohammad Abdullah Al Faruque</creatorcontrib><title>Single-Channel EEG Based Arousal Level Estimation Using Multitaper Spectrum Estimation at Low-Power Wearable Devices</title><title>arXiv.org</title><description>This paper proposes a novel lightweight method using the multitaper power spectrum to estimate arousal levels at wearable devices. We show that the spectral slope (1/f) of the electrophysiological power spectrum reflects the scale-free neural activity. To evaluate the proposed feature's performance, we used scalp EEG recorded during anesthesia and sleep with technician-scored Hypnogram annotations. It is shown that the proposed methodology discriminates wakefulness from reduced arousal solely based on the neurophysiological brain state with more than 80% accuracy. Therefore, our findings describe a common electrophysiological marker that tracks reduced arousal states, which can be applied to different applications (e.g., emotion detection, driver drowsiness). Evaluation on hardware shows that the proposed methodology can be implemented for devices with a minimum RAM of 512 KB with 55 mJ average energy consumption.</description><subject>Anesthesia</subject><subject>Annotations</subject><subject>Arousal</subject><subject>Driver fatigue</subject><subject>Energy consumption</subject><subject>Power management</subject><subject>Wakefulness</subject><subject>Wearable computers</subject><subject>Wearable technology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjt8LAUEUhSelCP_DLc9ba5Zdr34sHiiFPG4XF6Mxs-bO8O9b5cGjp1Pf-U6dmmjKJOlFw76UDdFhvsVxLNNMDgZJU_iNMhdN0eSKxpCGPJ_DGJlOMHI2MGpY0vPD2as7emUN7LiawCporzyW5GBT0tG7cP-V0MPSvqK1fVXCntDhQRNM6amOxG1RP6Nm6nyzJbqzfDtZRKWzj0Dsi5sNzlRVUb3M0qHspXHyn_UGl-ZLlQ</recordid><startdate>20210731</startdate><enddate>20210731</enddate><creator>Berken Utku Demirel</creator><creator>Skelin, Ivan</creator><creator>Zhang, Haoxin</creator><creator>Lin, Jack J</creator><creator>Mohammad Abdullah Al Faruque</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210731</creationdate><title>Single-Channel EEG Based Arousal Level Estimation Using Multitaper Spectrum Estimation at Low-Power Wearable Devices</title><author>Berken Utku Demirel ; Skelin, Ivan ; Zhang, Haoxin ; Lin, Jack J ; Mohammad Abdullah Al Faruque</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25576821603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anesthesia</topic><topic>Annotations</topic><topic>Arousal</topic><topic>Driver fatigue</topic><topic>Energy consumption</topic><topic>Power management</topic><topic>Wakefulness</topic><topic>Wearable computers</topic><topic>Wearable technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Berken Utku Demirel</creatorcontrib><creatorcontrib>Skelin, Ivan</creatorcontrib><creatorcontrib>Zhang, Haoxin</creatorcontrib><creatorcontrib>Lin, Jack J</creatorcontrib><creatorcontrib>Mohammad Abdullah Al Faruque</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berken Utku Demirel</au><au>Skelin, Ivan</au><au>Zhang, Haoxin</au><au>Lin, Jack J</au><au>Mohammad Abdullah Al Faruque</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Single-Channel EEG Based Arousal Level Estimation Using Multitaper Spectrum Estimation at Low-Power Wearable Devices</atitle><jtitle>arXiv.org</jtitle><date>2021-07-31</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper proposes a novel lightweight method using the multitaper power spectrum to estimate arousal levels at wearable devices. We show that the spectral slope (1/f) of the electrophysiological power spectrum reflects the scale-free neural activity. To evaluate the proposed feature's performance, we used scalp EEG recorded during anesthesia and sleep with technician-scored Hypnogram annotations. It is shown that the proposed methodology discriminates wakefulness from reduced arousal solely based on the neurophysiological brain state with more than 80% accuracy. Therefore, our findings describe a common electrophysiological marker that tracks reduced arousal states, which can be applied to different applications (e.g., emotion detection, driver drowsiness). Evaluation on hardware shows that the proposed methodology can be implemented for devices with a minimum RAM of 512 KB with 55 mJ average energy consumption.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2557682160
source Publicly Available Content Database
subjects Anesthesia
Annotations
Arousal
Driver fatigue
Energy consumption
Power management
Wakefulness
Wearable computers
Wearable technology
title Single-Channel EEG Based Arousal Level Estimation Using Multitaper Spectrum Estimation at Low-Power Wearable Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Single-Channel%20EEG%20Based%20Arousal%20Level%20Estimation%20Using%20Multitaper%20Spectrum%20Estimation%20at%20Low-Power%20Wearable%20Devices&rft.jtitle=arXiv.org&rft.au=Berken%20Utku%20Demirel&rft.date=2021-07-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2557682160%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25576821603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557682160&rft_id=info:pmid/&rfr_iscdi=true