Loading…

User abnormal behaviour sequence detection method based on Markov chain and SVDD

In order to solve the problem of insufficient use of sequence information and low detection efficiency of traditional anomaly detection methods, this paper introduces Markov chain into user behaviour sequence detection, and proposes a description based on Markov chain and support vector data field (...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Earth and environmental science 2019-05, Vol.267 (4), p.42061
Main Authors: Zou, Shengyuan, Chang, Chaowen, Han, Peisheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c354t-b1cf380b7f51dba4d67e66d754bae8016022b4eac76ad14d1d5846abe7f146a63
container_end_page
container_issue 4
container_start_page 42061
container_title IOP conference series. Earth and environmental science
container_volume 267
creator Zou, Shengyuan
Chang, Chaowen
Han, Peisheng
description In order to solve the problem of insufficient use of sequence information and low detection efficiency of traditional anomaly detection methods, this paper introduces Markov chain into user behaviour sequence detection, and proposes a description based on Markov chain and support vector data field ( SVDD) User Behaviour Sequence Detection Method (ASDMS), which first uses the Markov chain to accurately quantify the user behaviour sequence, then constructs the user's normal behaviour sequence model based on the support vector data field description model, and identifies the user anomaly behaviour. The experimental results show that the ASDMS method has better performance and timeliness than the traditional abnormal behaviour detection method.
doi_str_mv 10.1088/1755-1315/267/4/042061
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2557730814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557730814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-b1cf380b7f51dba4d67e66d754bae8016022b4eac76ad14d1d5846abe7f146a63</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKt_QQK--LJuspvL-ii9qFBRqPU1JJtZurXdrMm24L83ZaUiCD7NDHPOzOFD6JKSG0qKIqWS84TmlKeZkClLCcuIoEdocFgcH3oiT9FZCCtChGT57QC9LAJ4rE3j_EavsYGl3tVu63GAjy00JWALHZRd7Rq8gW7pLDY6gMVxftL-3e1wudR1g3Vj8fxtPD5HJ5VeB7j4rkO0mE5eRw_J7Pn-cXQ3S8qcsy4xtKzyghhZcWqNZlZIEMJKzoyGglBBssww0KUU2lJmqeUFE9qArGisIh-iq_5u611MGjq1irGb-FJlnEuZk4KyqBK9qvQuBA-Van290f5TUaL29NQejNpDUpGeYqqnF41Zb6xd-3P5X9P1H6bJZP5Lplpb5V8Han3X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557730814</pqid></control><display><type>article</type><title>User abnormal behaviour sequence detection method based on Markov chain and SVDD</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zou, Shengyuan ; Chang, Chaowen ; Han, Peisheng</creator><creatorcontrib>Zou, Shengyuan ; Chang, Chaowen ; Han, Peisheng</creatorcontrib><description>In order to solve the problem of insufficient use of sequence information and low detection efficiency of traditional anomaly detection methods, this paper introduces Markov chain into user behaviour sequence detection, and proposes a description based on Markov chain and support vector data field ( SVDD) User Behaviour Sequence Detection Method (ASDMS), which first uses the Markov chain to accurately quantify the user behaviour sequence, then constructs the user's normal behaviour sequence model based on the support vector data field description model, and identifies the user anomaly behaviour. The experimental results show that the ASDMS method has better performance and timeliness than the traditional abnormal behaviour detection method.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/267/4/042061</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anomalies ; Markov analysis ; Markov chains ; User behavior</subject><ispartof>IOP conference series. Earth and environmental science, 2019-05, Vol.267 (4), p.42061</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-b1cf380b7f51dba4d67e66d754bae8016022b4eac76ad14d1d5846abe7f146a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2557730814?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Zou, Shengyuan</creatorcontrib><creatorcontrib>Chang, Chaowen</creatorcontrib><creatorcontrib>Han, Peisheng</creatorcontrib><title>User abnormal behaviour sequence detection method based on Markov chain and SVDD</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>In order to solve the problem of insufficient use of sequence information and low detection efficiency of traditional anomaly detection methods, this paper introduces Markov chain into user behaviour sequence detection, and proposes a description based on Markov chain and support vector data field ( SVDD) User Behaviour Sequence Detection Method (ASDMS), which first uses the Markov chain to accurately quantify the user behaviour sequence, then constructs the user's normal behaviour sequence model based on the support vector data field description model, and identifies the user anomaly behaviour. The experimental results show that the ASDMS method has better performance and timeliness than the traditional abnormal behaviour detection method.</description><subject>Anomalies</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>User behavior</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkFtLAzEQhYMoWKt_QQK--LJuspvL-ii9qFBRqPU1JJtZurXdrMm24L83ZaUiCD7NDHPOzOFD6JKSG0qKIqWS84TmlKeZkClLCcuIoEdocFgcH3oiT9FZCCtChGT57QC9LAJ4rE3j_EavsYGl3tVu63GAjy00JWALHZRd7Rq8gW7pLDY6gMVxftL-3e1wudR1g3Vj8fxtPD5HJ5VeB7j4rkO0mE5eRw_J7Pn-cXQ3S8qcsy4xtKzyghhZcWqNZlZIEMJKzoyGglBBssww0KUU2lJmqeUFE9qArGisIh-iq_5u611MGjq1irGb-FJlnEuZk4KyqBK9qvQuBA-Van290f5TUaL29NQejNpDUpGeYqqnF41Zb6xd-3P5X9P1H6bJZP5Lplpb5V8Han3X</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Zou, Shengyuan</creator><creator>Chang, Chaowen</creator><creator>Han, Peisheng</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20190501</creationdate><title>User abnormal behaviour sequence detection method based on Markov chain and SVDD</title><author>Zou, Shengyuan ; Chang, Chaowen ; Han, Peisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-b1cf380b7f51dba4d67e66d754bae8016022b4eac76ad14d1d5846abe7f146a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anomalies</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Shengyuan</creatorcontrib><creatorcontrib>Chang, Chaowen</creatorcontrib><creatorcontrib>Han, Peisheng</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Shengyuan</au><au>Chang, Chaowen</au><au>Han, Peisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>User abnormal behaviour sequence detection method based on Markov chain and SVDD</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>267</volume><issue>4</issue><spage>42061</spage><pages>42061-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>In order to solve the problem of insufficient use of sequence information and low detection efficiency of traditional anomaly detection methods, this paper introduces Markov chain into user behaviour sequence detection, and proposes a description based on Markov chain and support vector data field ( SVDD) User Behaviour Sequence Detection Method (ASDMS), which first uses the Markov chain to accurately quantify the user behaviour sequence, then constructs the user's normal behaviour sequence model based on the support vector data field description model, and identifies the user anomaly behaviour. The experimental results show that the ASDMS method has better performance and timeliness than the traditional abnormal behaviour detection method.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/267/4/042061</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2019-05, Vol.267 (4), p.42061
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2557730814
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Anomalies
Markov analysis
Markov chains
User behavior
title User abnormal behaviour sequence detection method based on Markov chain and SVDD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=User%20abnormal%20behaviour%20sequence%20detection%20method%20based%20on%20Markov%20chain%20and%20SVDD&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Zou,%20Shengyuan&rft.date=2019-05-01&rft.volume=267&rft.issue=4&rft.spage=42061&rft.pages=42061-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/267/4/042061&rft_dat=%3Cproquest_iop_j%3E2557730814%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-b1cf380b7f51dba4d67e66d754bae8016022b4eac76ad14d1d5846abe7f146a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557730814&rft_id=info:pmid/&rfr_iscdi=true