Loading…
Generalized connectivity of some total graphs
We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ). We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for...
Saved in:
Published in: | Czechoslovak mathematical journal 2021-10, Vol.71 (3), p.623-640 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3 |
---|---|
cites | |
container_end_page | 640 |
container_issue | 3 |
container_start_page | 623 |
container_title | Czechoslovak mathematical journal |
container_volume | 71 |
creator | Li, Yinkui Mao, Yaping Wang, Zhao Wei, Zongtian |
description | We study the generalized
k
-connectivity
κ
k
(
G
) as introduced by Hager in 1985, as well as the more recently introduced generalized
k
-edge-connectivity
λ
k
(
G
). We determine the exact value of
κ
k
(
G
) and
λ
k
(
G
) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case
k
= 3. |
doi_str_mv | 10.21136/CMJ.2021.0287-19 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2557851303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557851303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3</originalsourceid><addsrcrecordid>eNpFkMFKxDAURYMoWEc_wF3Bdep7Sds0Syk6KiNudB3S9GXsUNsx6Qj69XYcwdWFy-FeOIxdImQCUZbX9dNjJkBgBqJSHPURS7BQgmvM8ZglAIg8L3Nxys5i3ACAxLxKGF_SQMH23Te1qRuHgdzUfXbTVzr6NI7vlE7jZPt0Hez2LZ6zE2_7SBd_uWCvd7cv9T1fPS8f6psVd7LQE_elcsq15KzKPQI2Ss09ta1TXqtKk7eNlko7T6X1FmxDFVJOCsDOpZULdnXY3YbxY0dxMptxF4b50oiiUFWBEuRMiQMVt6Eb1hT-KQTzq8XMWsxei9lrMajlD8buVgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557851303</pqid></control><display><type>article</type><title>Generalized connectivity of some total graphs</title><source>Springer Link</source><creator>Li, Yinkui ; Mao, Yaping ; Wang, Zhao ; Wei, Zongtian</creator><creatorcontrib>Li, Yinkui ; Mao, Yaping ; Wang, Zhao ; Wei, Zongtian</creatorcontrib><description>We study the generalized
k
-connectivity
κ
k
(
G
) as introduced by Hager in 1985, as well as the more recently introduced generalized
k
-edge-connectivity
λ
k
(
G
). We determine the exact value of
κ
k
(
G
) and
λ
k
(
G
) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case
k
= 3.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2021.0287-19</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Connectivity ; Convex and Discrete Geometry ; Graph theory ; Graphs ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations</subject><ispartof>Czechoslovak mathematical journal, 2021-10, Vol.71 (3), p.623-640</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2021</rights><rights>Institute of Mathematics, Czech Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Yinkui</creatorcontrib><creatorcontrib>Mao, Yaping</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Wei, Zongtian</creatorcontrib><title>Generalized connectivity of some total graphs</title><title>Czechoslovak mathematical journal</title><addtitle>Czech Math J</addtitle><description>We study the generalized
k
-connectivity
κ
k
(
G
) as introduced by Hager in 1985, as well as the more recently introduced generalized
k
-edge-connectivity
λ
k
(
G
). We determine the exact value of
κ
k
(
G
) and
λ
k
(
G
) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case
k
= 3.</description><subject>Analysis</subject><subject>Connectivity</subject><subject>Convex and Discrete Geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMFKxDAURYMoWEc_wF3Bdep7Sds0Syk6KiNudB3S9GXsUNsx6Qj69XYcwdWFy-FeOIxdImQCUZbX9dNjJkBgBqJSHPURS7BQgmvM8ZglAIg8L3Nxys5i3ACAxLxKGF_SQMH23Te1qRuHgdzUfXbTVzr6NI7vlE7jZPt0Hez2LZ6zE2_7SBd_uWCvd7cv9T1fPS8f6psVd7LQE_elcsq15KzKPQI2Ss09ta1TXqtKk7eNlko7T6X1FmxDFVJOCsDOpZULdnXY3YbxY0dxMptxF4b50oiiUFWBEuRMiQMVt6Eb1hT-KQTzq8XMWsxei9lrMajlD8buVgo</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Li, Yinkui</creator><creator>Mao, Yaping</creator><creator>Wang, Zhao</creator><creator>Wei, Zongtian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20211001</creationdate><title>Generalized connectivity of some total graphs</title><author>Li, Yinkui ; Mao, Yaping ; Wang, Zhao ; Wei, Zongtian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Connectivity</topic><topic>Convex and Discrete Geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yinkui</creatorcontrib><creatorcontrib>Mao, Yaping</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Wei, Zongtian</creatorcontrib><jtitle>Czechoslovak mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yinkui</au><au>Mao, Yaping</au><au>Wang, Zhao</au><au>Wei, Zongtian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized connectivity of some total graphs</atitle><jtitle>Czechoslovak mathematical journal</jtitle><stitle>Czech Math J</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>71</volume><issue>3</issue><spage>623</spage><epage>640</epage><pages>623-640</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>We study the generalized
k
-connectivity
κ
k
(
G
) as introduced by Hager in 1985, as well as the more recently introduced generalized
k
-edge-connectivity
λ
k
(
G
). We determine the exact value of
κ
k
(
G
) and
λ
k
(
G
) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case
k
= 3.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2021.0287-19</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-4642 |
ispartof | Czechoslovak mathematical journal, 2021-10, Vol.71 (3), p.623-640 |
issn | 0011-4642 1572-9141 |
language | eng |
recordid | cdi_proquest_journals_2557851303 |
source | Springer Link |
subjects | Analysis Connectivity Convex and Discrete Geometry Graph theory Graphs Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Ordinary Differential Equations |
title | Generalized connectivity of some total graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20connectivity%20of%20some%20total%20graphs&rft.jtitle=Czechoslovak%20mathematical%20journal&rft.au=Li,%20Yinkui&rft.date=2021-10-01&rft.volume=71&rft.issue=3&rft.spage=623&rft.epage=640&rft.pages=623-640&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2021.0287-19&rft_dat=%3Cproquest_sprin%3E2557851303%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557851303&rft_id=info:pmid/&rfr_iscdi=true |