Loading…

Generalized connectivity of some total graphs

We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ). We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for...

Full description

Saved in:
Bibliographic Details
Published in:Czechoslovak mathematical journal 2021-10, Vol.71 (3), p.623-640
Main Authors: Li, Yinkui, Mao, Yaping, Wang, Zhao, Wei, Zongtian
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3
cites
container_end_page 640
container_issue 3
container_start_page 623
container_title Czechoslovak mathematical journal
container_volume 71
creator Li, Yinkui
Mao, Yaping
Wang, Zhao
Wei, Zongtian
description We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ). We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case k = 3.
doi_str_mv 10.21136/CMJ.2021.0287-19
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2557851303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557851303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3</originalsourceid><addsrcrecordid>eNpFkMFKxDAURYMoWEc_wF3Bdep7Sds0Syk6KiNudB3S9GXsUNsx6Qj69XYcwdWFy-FeOIxdImQCUZbX9dNjJkBgBqJSHPURS7BQgmvM8ZglAIg8L3Nxys5i3ACAxLxKGF_SQMH23Te1qRuHgdzUfXbTVzr6NI7vlE7jZPt0Hez2LZ6zE2_7SBd_uWCvd7cv9T1fPS8f6psVd7LQE_elcsq15KzKPQI2Ss09ta1TXqtKk7eNlko7T6X1FmxDFVJOCsDOpZULdnXY3YbxY0dxMptxF4b50oiiUFWBEuRMiQMVt6Eb1hT-KQTzq8XMWsxei9lrMajlD8buVgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557851303</pqid></control><display><type>article</type><title>Generalized connectivity of some total graphs</title><source>Springer Link</source><creator>Li, Yinkui ; Mao, Yaping ; Wang, Zhao ; Wei, Zongtian</creator><creatorcontrib>Li, Yinkui ; Mao, Yaping ; Wang, Zhao ; Wei, Zongtian</creatorcontrib><description>We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ). We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case k = 3.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2021.0287-19</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Connectivity ; Convex and Discrete Geometry ; Graph theory ; Graphs ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations</subject><ispartof>Czechoslovak mathematical journal, 2021-10, Vol.71 (3), p.623-640</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2021</rights><rights>Institute of Mathematics, Czech Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Yinkui</creatorcontrib><creatorcontrib>Mao, Yaping</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Wei, Zongtian</creatorcontrib><title>Generalized connectivity of some total graphs</title><title>Czechoslovak mathematical journal</title><addtitle>Czech Math J</addtitle><description>We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ). We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case k = 3.</description><subject>Analysis</subject><subject>Connectivity</subject><subject>Convex and Discrete Geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMFKxDAURYMoWEc_wF3Bdep7Sds0Syk6KiNudB3S9GXsUNsx6Qj69XYcwdWFy-FeOIxdImQCUZbX9dNjJkBgBqJSHPURS7BQgmvM8ZglAIg8L3Nxys5i3ACAxLxKGF_SQMH23Te1qRuHgdzUfXbTVzr6NI7vlE7jZPt0Hez2LZ6zE2_7SBd_uWCvd7cv9T1fPS8f6psVd7LQE_elcsq15KzKPQI2Ss09ta1TXqtKk7eNlko7T6X1FmxDFVJOCsDOpZULdnXY3YbxY0dxMptxF4b50oiiUFWBEuRMiQMVt6Eb1hT-KQTzq8XMWsxei9lrMajlD8buVgo</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Li, Yinkui</creator><creator>Mao, Yaping</creator><creator>Wang, Zhao</creator><creator>Wei, Zongtian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20211001</creationdate><title>Generalized connectivity of some total graphs</title><author>Li, Yinkui ; Mao, Yaping ; Wang, Zhao ; Wei, Zongtian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Connectivity</topic><topic>Convex and Discrete Geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yinkui</creatorcontrib><creatorcontrib>Mao, Yaping</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Wei, Zongtian</creatorcontrib><jtitle>Czechoslovak mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yinkui</au><au>Mao, Yaping</au><au>Wang, Zhao</au><au>Wei, Zongtian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized connectivity of some total graphs</atitle><jtitle>Czechoslovak mathematical journal</jtitle><stitle>Czech Math J</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>71</volume><issue>3</issue><spage>623</spage><epage>640</epage><pages>623-640</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ). We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case k = 3.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2021.0287-19</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-4642
ispartof Czechoslovak mathematical journal, 2021-10, Vol.71 (3), p.623-640
issn 0011-4642
1572-9141
language eng
recordid cdi_proquest_journals_2557851303
source Springer Link
subjects Analysis
Connectivity
Convex and Discrete Geometry
Graph theory
Graphs
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
title Generalized connectivity of some total graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20connectivity%20of%20some%20total%20graphs&rft.jtitle=Czechoslovak%20mathematical%20journal&rft.au=Li,%20Yinkui&rft.date=2021-10-01&rft.volume=71&rft.issue=3&rft.spage=623&rft.epage=640&rft.pages=623-640&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2021.0287-19&rft_dat=%3Cproquest_sprin%3E2557851303%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f67c7cdeca74f101b77359eddc7f9789efab9379cfe6afa0abe81e4e700a9cfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557851303&rft_id=info:pmid/&rfr_iscdi=true