Loading…
Indirect light absorption model for highly strained silicon infrared sensors
The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial str...
Saved in:
Published in: | Journal of applied physics 2021-08, Vol.130 (5) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 130 |
creator | Roisin, Nicolas Brunin, Guillaume Rignanese, Gian-Marco Flandre, Denis Raskin, Jean-Pierre |
description | The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial strains. The model is based on material properties such as the bandgap, the conduction and valence band density-of-states effective masses, and the phonon frequencies, which are obtained from first principles including strain up to
±
2% along the [110] and [111] directions. We show that the limit of absorption can increase from 1.14 (1.09) to 1.35
μm (0.92 eV) under 2% strain and that the absorption increases by a factor of 55 for the zero-strain cutoff wavelength of 1.14
μm when a 2% compressive strain is applied in the [110] direction. We demonstrate that this effect is mainly due to the impact of strain on the electronic bandgaps of silicon, directly followed by the valence band density-of-states effective mass. |
doi_str_mv | 10.1063/5.0057350 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2557901297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557901297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_8GCJ4Wtk6TZbI5S_CgUvOg5ZPNhU7abNUmF_ntTWvDuaeCdZ2beeRG6xTDD0NBHNgNgnDI4QxMMrag5Y3COJgAE163g4hJdpbQBwLilYoJWy8H4aHWuev-1zpXqUohj9mGotsHYvnIhVuvS6vdVylH5wZoq-d7rQvjBRRUPgh3KWLpGF071yd6c6hR9vjx_LN7q1fvrcvG0qjUlPNcNcZhYCsUN413HGssawQyxmBV93hJBxbzTptWdoMo0cyJAC6F5Q0nrOkqn6O64d4zhe2dTlpuwi0M5KQljXAAmghfq_kjpGFKK1skx-q2Ke4lBHsKSTJ7CKuzDkU3aZ3V4_3_wT4h_oByNo782lXdF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557901297</pqid></control><display><type>article</type><title>Indirect light absorption model for highly strained silicon infrared sensors</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Roisin, Nicolas ; Brunin, Guillaume ; Rignanese, Gian-Marco ; Flandre, Denis ; Raskin, Jean-Pierre</creator><creatorcontrib>Roisin, Nicolas ; Brunin, Guillaume ; Rignanese, Gian-Marco ; Flandre, Denis ; Raskin, Jean-Pierre</creatorcontrib><description>The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial strains. The model is based on material properties such as the bandgap, the conduction and valence band density-of-states effective masses, and the phonon frequencies, which are obtained from first principles including strain up to
±
2% along the [110] and [111] directions. We show that the limit of absorption can increase from 1.14 (1.09) to 1.35
μm (0.92 eV) under 2% strain and that the absorption increases by a factor of 55 for the zero-strain cutoff wavelength of 1.14
μm when a 2% compressive strain is applied in the [110] direction. We demonstrate that this effect is mainly due to the impact of strain on the electronic bandgaps of silicon, directly followed by the valence band density-of-states effective mass.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0057350</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Compressive properties ; Conduction bands ; Cut off wavelength ; Density of states ; Electromagnetic absorption ; Energy gap ; First principles ; Infrared detectors ; Material properties ; Optical properties ; Silicon ; Valence band</subject><ispartof>Journal of applied physics, 2021-08, Vol.130 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33</citedby><cites>FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33</cites><orcidid>0000-0002-1422-1205 ; 0000-0002-5685-4668 ; 0000-0002-4251-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roisin, Nicolas</creatorcontrib><creatorcontrib>Brunin, Guillaume</creatorcontrib><creatorcontrib>Rignanese, Gian-Marco</creatorcontrib><creatorcontrib>Flandre, Denis</creatorcontrib><creatorcontrib>Raskin, Jean-Pierre</creatorcontrib><title>Indirect light absorption model for highly strained silicon infrared sensors</title><title>Journal of applied physics</title><description>The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial strains. The model is based on material properties such as the bandgap, the conduction and valence band density-of-states effective masses, and the phonon frequencies, which are obtained from first principles including strain up to
±
2% along the [110] and [111] directions. We show that the limit of absorption can increase from 1.14 (1.09) to 1.35
μm (0.92 eV) under 2% strain and that the absorption increases by a factor of 55 for the zero-strain cutoff wavelength of 1.14
μm when a 2% compressive strain is applied in the [110] direction. We demonstrate that this effect is mainly due to the impact of strain on the electronic bandgaps of silicon, directly followed by the valence band density-of-states effective mass.</description><subject>Compressive properties</subject><subject>Conduction bands</subject><subject>Cut off wavelength</subject><subject>Density of states</subject><subject>Electromagnetic absorption</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Infrared detectors</subject><subject>Material properties</subject><subject>Optical properties</subject><subject>Silicon</subject><subject>Valence band</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_8GCJ4Wtk6TZbI5S_CgUvOg5ZPNhU7abNUmF_ntTWvDuaeCdZ2beeRG6xTDD0NBHNgNgnDI4QxMMrag5Y3COJgAE163g4hJdpbQBwLilYoJWy8H4aHWuev-1zpXqUohj9mGotsHYvnIhVuvS6vdVylH5wZoq-d7rQvjBRRUPgh3KWLpGF071yd6c6hR9vjx_LN7q1fvrcvG0qjUlPNcNcZhYCsUN413HGssawQyxmBV93hJBxbzTptWdoMo0cyJAC6F5Q0nrOkqn6O64d4zhe2dTlpuwi0M5KQljXAAmghfq_kjpGFKK1skx-q2Ke4lBHsKSTJ7CKuzDkU3aZ3V4_3_wT4h_oByNo782lXdF</recordid><startdate>20210807</startdate><enddate>20210807</enddate><creator>Roisin, Nicolas</creator><creator>Brunin, Guillaume</creator><creator>Rignanese, Gian-Marco</creator><creator>Flandre, Denis</creator><creator>Raskin, Jean-Pierre</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0002-5685-4668</orcidid><orcidid>https://orcid.org/0000-0002-4251-1648</orcidid></search><sort><creationdate>20210807</creationdate><title>Indirect light absorption model for highly strained silicon infrared sensors</title><author>Roisin, Nicolas ; Brunin, Guillaume ; Rignanese, Gian-Marco ; Flandre, Denis ; Raskin, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compressive properties</topic><topic>Conduction bands</topic><topic>Cut off wavelength</topic><topic>Density of states</topic><topic>Electromagnetic absorption</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Infrared detectors</topic><topic>Material properties</topic><topic>Optical properties</topic><topic>Silicon</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roisin, Nicolas</creatorcontrib><creatorcontrib>Brunin, Guillaume</creatorcontrib><creatorcontrib>Rignanese, Gian-Marco</creatorcontrib><creatorcontrib>Flandre, Denis</creatorcontrib><creatorcontrib>Raskin, Jean-Pierre</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roisin, Nicolas</au><au>Brunin, Guillaume</au><au>Rignanese, Gian-Marco</au><au>Flandre, Denis</au><au>Raskin, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect light absorption model for highly strained silicon infrared sensors</atitle><jtitle>Journal of applied physics</jtitle><date>2021-08-07</date><risdate>2021</risdate><volume>130</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial strains. The model is based on material properties such as the bandgap, the conduction and valence band density-of-states effective masses, and the phonon frequencies, which are obtained from first principles including strain up to
±
2% along the [110] and [111] directions. We show that the limit of absorption can increase from 1.14 (1.09) to 1.35
μm (0.92 eV) under 2% strain and that the absorption increases by a factor of 55 for the zero-strain cutoff wavelength of 1.14
μm when a 2% compressive strain is applied in the [110] direction. We demonstrate that this effect is mainly due to the impact of strain on the electronic bandgaps of silicon, directly followed by the valence band density-of-states effective mass.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0057350</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0002-5685-4668</orcidid><orcidid>https://orcid.org/0000-0002-4251-1648</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2021-08, Vol.130 (5) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2557901297 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Compressive properties Conduction bands Cut off wavelength Density of states Electromagnetic absorption Energy gap First principles Infrared detectors Material properties Optical properties Silicon Valence band |
title | Indirect light absorption model for highly strained silicon infrared sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20light%20absorption%20model%20for%20highly%20strained%20silicon%20infrared%20sensors&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Roisin,%20Nicolas&rft.date=2021-08-07&rft.volume=130&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0057350&rft_dat=%3Cproquest_scita%3E2557901297%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557901297&rft_id=info:pmid/&rfr_iscdi=true |