Loading…

Indirect light absorption model for highly strained silicon infrared sensors

The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial str...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2021-08, Vol.130 (5)
Main Authors: Roisin, Nicolas, Brunin, Guillaume, Rignanese, Gian-Marco, Flandre, Denis, Raskin, Jean-Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33
cites cdi_FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 130
creator Roisin, Nicolas
Brunin, Guillaume
Rignanese, Gian-Marco
Flandre, Denis
Raskin, Jean-Pierre
description The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial strains. The model is based on material properties such as the bandgap, the conduction and valence band density-of-states effective masses, and the phonon frequencies, which are obtained from first principles including strain up to ± 2% along the [110] and [111] directions. We show that the limit of absorption can increase from 1.14 (1.09) to 1.35  μm (0.92 eV) under 2% strain and that the absorption increases by a factor of 55 for the zero-strain cutoff wavelength of 1.14  μm when a 2% compressive strain is applied in the [110] direction. We demonstrate that this effect is mainly due to the impact of strain on the electronic bandgaps of silicon, directly followed by the valence band density-of-states effective mass.
doi_str_mv 10.1063/5.0057350
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2557901297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557901297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_8GCJ4Wtk6TZbI5S_CgUvOg5ZPNhU7abNUmF_ntTWvDuaeCdZ2beeRG6xTDD0NBHNgNgnDI4QxMMrag5Y3COJgAE163g4hJdpbQBwLilYoJWy8H4aHWuev-1zpXqUohj9mGotsHYvnIhVuvS6vdVylH5wZoq-d7rQvjBRRUPgh3KWLpGF071yd6c6hR9vjx_LN7q1fvrcvG0qjUlPNcNcZhYCsUN413HGssawQyxmBV93hJBxbzTptWdoMo0cyJAC6F5Q0nrOkqn6O64d4zhe2dTlpuwi0M5KQljXAAmghfq_kjpGFKK1skx-q2Ke4lBHsKSTJ7CKuzDkU3aZ3V4_3_wT4h_oByNo782lXdF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557901297</pqid></control><display><type>article</type><title>Indirect light absorption model for highly strained silicon infrared sensors</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Roisin, Nicolas ; Brunin, Guillaume ; Rignanese, Gian-Marco ; Flandre, Denis ; Raskin, Jean-Pierre</creator><creatorcontrib>Roisin, Nicolas ; Brunin, Guillaume ; Rignanese, Gian-Marco ; Flandre, Denis ; Raskin, Jean-Pierre</creatorcontrib><description>The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial strains. The model is based on material properties such as the bandgap, the conduction and valence band density-of-states effective masses, and the phonon frequencies, which are obtained from first principles including strain up to ± 2% along the [110] and [111] directions. We show that the limit of absorption can increase from 1.14 (1.09) to 1.35  μm (0.92 eV) under 2% strain and that the absorption increases by a factor of 55 for the zero-strain cutoff wavelength of 1.14  μm when a 2% compressive strain is applied in the [110] direction. We demonstrate that this effect is mainly due to the impact of strain on the electronic bandgaps of silicon, directly followed by the valence band density-of-states effective mass.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0057350</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Compressive properties ; Conduction bands ; Cut off wavelength ; Density of states ; Electromagnetic absorption ; Energy gap ; First principles ; Infrared detectors ; Material properties ; Optical properties ; Silicon ; Valence band</subject><ispartof>Journal of applied physics, 2021-08, Vol.130 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33</citedby><cites>FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33</cites><orcidid>0000-0002-1422-1205 ; 0000-0002-5685-4668 ; 0000-0002-4251-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roisin, Nicolas</creatorcontrib><creatorcontrib>Brunin, Guillaume</creatorcontrib><creatorcontrib>Rignanese, Gian-Marco</creatorcontrib><creatorcontrib>Flandre, Denis</creatorcontrib><creatorcontrib>Raskin, Jean-Pierre</creatorcontrib><title>Indirect light absorption model for highly strained silicon infrared sensors</title><title>Journal of applied physics</title><description>The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial strains. The model is based on material properties such as the bandgap, the conduction and valence band density-of-states effective masses, and the phonon frequencies, which are obtained from first principles including strain up to ± 2% along the [110] and [111] directions. We show that the limit of absorption can increase from 1.14 (1.09) to 1.35  μm (0.92 eV) under 2% strain and that the absorption increases by a factor of 55 for the zero-strain cutoff wavelength of 1.14  μm when a 2% compressive strain is applied in the [110] direction. We demonstrate that this effect is mainly due to the impact of strain on the electronic bandgaps of silicon, directly followed by the valence band density-of-states effective mass.</description><subject>Compressive properties</subject><subject>Conduction bands</subject><subject>Cut off wavelength</subject><subject>Density of states</subject><subject>Electromagnetic absorption</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Infrared detectors</subject><subject>Material properties</subject><subject>Optical properties</subject><subject>Silicon</subject><subject>Valence band</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_8GCJ4Wtk6TZbI5S_CgUvOg5ZPNhU7abNUmF_ntTWvDuaeCdZ2beeRG6xTDD0NBHNgNgnDI4QxMMrag5Y3COJgAE163g4hJdpbQBwLilYoJWy8H4aHWuev-1zpXqUohj9mGotsHYvnIhVuvS6vdVylH5wZoq-d7rQvjBRRUPgh3KWLpGF071yd6c6hR9vjx_LN7q1fvrcvG0qjUlPNcNcZhYCsUN413HGssawQyxmBV93hJBxbzTptWdoMo0cyJAC6F5Q0nrOkqn6O64d4zhe2dTlpuwi0M5KQljXAAmghfq_kjpGFKK1skx-q2Ke4lBHsKSTJ7CKuzDkU3aZ3V4_3_wT4h_oByNo782lXdF</recordid><startdate>20210807</startdate><enddate>20210807</enddate><creator>Roisin, Nicolas</creator><creator>Brunin, Guillaume</creator><creator>Rignanese, Gian-Marco</creator><creator>Flandre, Denis</creator><creator>Raskin, Jean-Pierre</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0002-5685-4668</orcidid><orcidid>https://orcid.org/0000-0002-4251-1648</orcidid></search><sort><creationdate>20210807</creationdate><title>Indirect light absorption model for highly strained silicon infrared sensors</title><author>Roisin, Nicolas ; Brunin, Guillaume ; Rignanese, Gian-Marco ; Flandre, Denis ; Raskin, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compressive properties</topic><topic>Conduction bands</topic><topic>Cut off wavelength</topic><topic>Density of states</topic><topic>Electromagnetic absorption</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Infrared detectors</topic><topic>Material properties</topic><topic>Optical properties</topic><topic>Silicon</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roisin, Nicolas</creatorcontrib><creatorcontrib>Brunin, Guillaume</creatorcontrib><creatorcontrib>Rignanese, Gian-Marco</creatorcontrib><creatorcontrib>Flandre, Denis</creatorcontrib><creatorcontrib>Raskin, Jean-Pierre</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roisin, Nicolas</au><au>Brunin, Guillaume</au><au>Rignanese, Gian-Marco</au><au>Flandre, Denis</au><au>Raskin, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect light absorption model for highly strained silicon infrared sensors</atitle><jtitle>Journal of applied physics</jtitle><date>2021-08-07</date><risdate>2021</risdate><volume>130</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The optical properties of silicon can be greatly tuned by applying strain and opening new perspectives, particularly in applications where infrared is key. In this work, we use a recent model for the indirect light absorption of silicon and include the effects of tensile and compressive uniaxial strains. The model is based on material properties such as the bandgap, the conduction and valence band density-of-states effective masses, and the phonon frequencies, which are obtained from first principles including strain up to ± 2% along the [110] and [111] directions. We show that the limit of absorption can increase from 1.14 (1.09) to 1.35  μm (0.92 eV) under 2% strain and that the absorption increases by a factor of 55 for the zero-strain cutoff wavelength of 1.14  μm when a 2% compressive strain is applied in the [110] direction. We demonstrate that this effect is mainly due to the impact of strain on the electronic bandgaps of silicon, directly followed by the valence band density-of-states effective mass.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0057350</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0002-5685-4668</orcidid><orcidid>https://orcid.org/0000-0002-4251-1648</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-08, Vol.130 (5)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2557901297
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Compressive properties
Conduction bands
Cut off wavelength
Density of states
Electromagnetic absorption
Energy gap
First principles
Infrared detectors
Material properties
Optical properties
Silicon
Valence band
title Indirect light absorption model for highly strained silicon infrared sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20light%20absorption%20model%20for%20highly%20strained%20silicon%20infrared%20sensors&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Roisin,%20Nicolas&rft.date=2021-08-07&rft.volume=130&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0057350&rft_dat=%3Cproquest_scita%3E2557901297%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-62f12e3097957bb56e5695d2e1512e4829394bcd8cb93ad64290c99c76328fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557901297&rft_id=info:pmid/&rfr_iscdi=true