Loading…

Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material

We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape...

Full description

Saved in:
Bibliographic Details
Published in:Fatigue & fracture of engineering materials & structures 2021-09, Vol.44 (9), p.2372-2388
Main Authors: Peng, Fan, Huang, Wei, Ma, Yu'e, Zhang, Zhi‐Qian, Fu, Nanke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3
cites cdi_FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3
container_end_page 2388
container_issue 9
container_start_page 2372
container_title Fatigue & fracture of engineering materials & structures
container_volume 44
creator Peng, Fan
Huang, Wei
Ma, Yu'e
Zhang, Zhi‐Qian
Fu, Nanke
description We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape function. Therefore, a 5 × 5 Jacobian matrix of isoparametric transformation is constructed. Neo‐Hooken model and Hencky model are adopted as the material constitutive models. The spectral decomposition of stored strain energy is used to distinguish the contributions of tension and compression, and the corresponding stress tensor and constitutive tensors are derived, and subsequently, the numerical framework of modeling fracture with the fourth‐order phase field model is implemented in details. Several typical numerical examples are conducted to demonstrate the robustness and effectiveness of the fourth‐order phase field model in simulating the fracture phenomenon of rubber‐like materials.
doi_str_mv 10.1111/ffe.13495
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558358562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558358562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2knsxCOqGkCqxAISW-TYZ-IqqYPtqOrGI_CMPAmBsnLLv3x3v-5D6JqSBZ1maQwsaJYLdoJmNOckSblgp2hWFownBStfz9FFCFtCKM-zbIb6yo0-tl8fn85r8HhoZQBsLHQa905Dh_c2tjgMoKKXHdagXD-4YKN1O2ycx8H2Yyej3b1h46WKowdsd7g9DOChkyFahXsZwVvZXaIzI7sAV385Ry_V-nn1kGye7h9Xd5tEpaJgiaSiJJngvBHAy7QguuEmFZLSRgtNmZQNKENTpmQjOCFaAS9YmjcmLzQByObo5nh38O59hBDr7fTmbqqsU8bKjJWMpxN1e6SUdyF4MPXgbS_9oaak_rFZTzbrX5sTuzyye9vB4X-wrqr1ceMblbt56Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558358562</pqid></control><display><type>article</type><title>Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Peng, Fan ; Huang, Wei ; Ma, Yu'e ; Zhang, Zhi‐Qian ; Fu, Nanke</creator><creatorcontrib>Peng, Fan ; Huang, Wei ; Ma, Yu'e ; Zhang, Zhi‐Qian ; Fu, Nanke</creatorcontrib><description>We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape function. Therefore, a 5 × 5 Jacobian matrix of isoparametric transformation is constructed. Neo‐Hooken model and Hencky model are adopted as the material constitutive models. The spectral decomposition of stored strain energy is used to distinguish the contributions of tension and compression, and the corresponding stress tensor and constitutive tensors are derived, and subsequently, the numerical framework of modeling fracture with the fourth‐order phase field model is implemented in details. Several typical numerical examples are conducted to demonstrate the robustness and effectiveness of the fourth‐order phase field model in simulating the fracture phenomenon of rubber‐like materials.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13495</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Constitutive models ; finite deformation ; fourth‐order phase field model ; fracture ; hyperelastic materials ; Jacobi matrix method ; Jacobian matrix ; Mathematical analysis ; Mathematical models ; Operators (mathematics) ; Robustness (mathematics) ; Shape functions ; Simulation ; spectral decomposition ; Tensors</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2021-09, Vol.44 (9), p.2372-2388</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><rights>2021 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3</citedby><cites>FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3</cites><orcidid>0000-0001-5583-1774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Peng, Fan</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Ma, Yu'e</creatorcontrib><creatorcontrib>Zhang, Zhi‐Qian</creatorcontrib><creatorcontrib>Fu, Nanke</creatorcontrib><title>Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape function. Therefore, a 5 × 5 Jacobian matrix of isoparametric transformation is constructed. Neo‐Hooken model and Hencky model are adopted as the material constitutive models. The spectral decomposition of stored strain energy is used to distinguish the contributions of tension and compression, and the corresponding stress tensor and constitutive tensors are derived, and subsequently, the numerical framework of modeling fracture with the fourth‐order phase field model is implemented in details. Several typical numerical examples are conducted to demonstrate the robustness and effectiveness of the fourth‐order phase field model in simulating the fracture phenomenon of rubber‐like materials.</description><subject>Constitutive models</subject><subject>finite deformation</subject><subject>fourth‐order phase field model</subject><subject>fracture</subject><subject>hyperelastic materials</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Robustness (mathematics)</subject><subject>Shape functions</subject><subject>Simulation</subject><subject>spectral decomposition</subject><subject>Tensors</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2knsxCOqGkCqxAISW-TYZ-IqqYPtqOrGI_CMPAmBsnLLv3x3v-5D6JqSBZ1maQwsaJYLdoJmNOckSblgp2hWFownBStfz9FFCFtCKM-zbIb6yo0-tl8fn85r8HhoZQBsLHQa905Dh_c2tjgMoKKXHdagXD-4YKN1O2ycx8H2Yyej3b1h46WKowdsd7g9DOChkyFahXsZwVvZXaIzI7sAV385Ry_V-nn1kGye7h9Xd5tEpaJgiaSiJJngvBHAy7QguuEmFZLSRgtNmZQNKENTpmQjOCFaAS9YmjcmLzQByObo5nh38O59hBDr7fTmbqqsU8bKjJWMpxN1e6SUdyF4MPXgbS_9oaak_rFZTzbrX5sTuzyye9vB4X-wrqr1ceMblbt56Q</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Peng, Fan</creator><creator>Huang, Wei</creator><creator>Ma, Yu'e</creator><creator>Zhang, Zhi‐Qian</creator><creator>Fu, Nanke</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5583-1774</orcidid></search><sort><creationdate>202109</creationdate><title>Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material</title><author>Peng, Fan ; Huang, Wei ; Ma, Yu'e ; Zhang, Zhi‐Qian ; Fu, Nanke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Constitutive models</topic><topic>finite deformation</topic><topic>fourth‐order phase field model</topic><topic>fracture</topic><topic>hyperelastic materials</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Robustness (mathematics)</topic><topic>Shape functions</topic><topic>Simulation</topic><topic>spectral decomposition</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Fan</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Ma, Yu'e</creatorcontrib><creatorcontrib>Zhang, Zhi‐Qian</creatorcontrib><creatorcontrib>Fu, Nanke</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Fan</au><au>Huang, Wei</au><au>Ma, Yu'e</au><au>Zhang, Zhi‐Qian</au><au>Fu, Nanke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2021-09</date><risdate>2021</risdate><volume>44</volume><issue>9</issue><spage>2372</spage><epage>2388</epage><pages>2372-2388</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape function. Therefore, a 5 × 5 Jacobian matrix of isoparametric transformation is constructed. Neo‐Hooken model and Hencky model are adopted as the material constitutive models. The spectral decomposition of stored strain energy is used to distinguish the contributions of tension and compression, and the corresponding stress tensor and constitutive tensors are derived, and subsequently, the numerical framework of modeling fracture with the fourth‐order phase field model is implemented in details. Several typical numerical examples are conducted to demonstrate the robustness and effectiveness of the fourth‐order phase field model in simulating the fracture phenomenon of rubber‐like materials.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13495</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5583-1774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2021-09, Vol.44 (9), p.2372-2388
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2558358562
source Wiley-Blackwell Read & Publish Collection
subjects Constitutive models
finite deformation
fourth‐order phase field model
fracture
hyperelastic materials
Jacobi matrix method
Jacobian matrix
Mathematical analysis
Mathematical models
Operators (mathematics)
Robustness (mathematics)
Shape functions
Simulation
spectral decomposition
Tensors
title Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourth%E2%80%90order%20phase%20field%20model%20with%20spectral%20decomposition%20for%20simulating%20fracture%20in%20hyperelastic%20material&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Peng,%20Fan&rft.date=2021-09&rft.volume=44&rft.issue=9&rft.spage=2372&rft.epage=2388&rft.pages=2372-2388&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13495&rft_dat=%3Cproquest_cross%3E2558358562%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558358562&rft_id=info:pmid/&rfr_iscdi=true