Loading…
Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material
We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape...
Saved in:
Published in: | Fatigue & fracture of engineering materials & structures 2021-09, Vol.44 (9), p.2372-2388 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3 |
container_end_page | 2388 |
container_issue | 9 |
container_start_page | 2372 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 44 |
creator | Peng, Fan Huang, Wei Ma, Yu'e Zhang, Zhi‐Qian Fu, Nanke |
description | We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape function. Therefore, a 5 × 5 Jacobian matrix of isoparametric transformation is constructed. Neo‐Hooken model and Hencky model are adopted as the material constitutive models. The spectral decomposition of stored strain energy is used to distinguish the contributions of tension and compression, and the corresponding stress tensor and constitutive tensors are derived, and subsequently, the numerical framework of modeling fracture with the fourth‐order phase field model is implemented in details. Several typical numerical examples are conducted to demonstrate the robustness and effectiveness of the fourth‐order phase field model in simulating the fracture phenomenon of rubber‐like materials. |
doi_str_mv | 10.1111/ffe.13495 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558358562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558358562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2knsxCOqGkCqxAISW-TYZ-IqqYPtqOrGI_CMPAmBsnLLv3x3v-5D6JqSBZ1maQwsaJYLdoJmNOckSblgp2hWFownBStfz9FFCFtCKM-zbIb6yo0-tl8fn85r8HhoZQBsLHQa905Dh_c2tjgMoKKXHdagXD-4YKN1O2ycx8H2Yyej3b1h46WKowdsd7g9DOChkyFahXsZwVvZXaIzI7sAV385Ry_V-nn1kGye7h9Xd5tEpaJgiaSiJJngvBHAy7QguuEmFZLSRgtNmZQNKENTpmQjOCFaAS9YmjcmLzQByObo5nh38O59hBDr7fTmbqqsU8bKjJWMpxN1e6SUdyF4MPXgbS_9oaak_rFZTzbrX5sTuzyye9vB4X-wrqr1ceMblbt56Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558358562</pqid></control><display><type>article</type><title>Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Peng, Fan ; Huang, Wei ; Ma, Yu'e ; Zhang, Zhi‐Qian ; Fu, Nanke</creator><creatorcontrib>Peng, Fan ; Huang, Wei ; Ma, Yu'e ; Zhang, Zhi‐Qian ; Fu, Nanke</creatorcontrib><description>We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape function. Therefore, a 5 × 5 Jacobian matrix of isoparametric transformation is constructed. Neo‐Hooken model and Hencky model are adopted as the material constitutive models. The spectral decomposition of stored strain energy is used to distinguish the contributions of tension and compression, and the corresponding stress tensor and constitutive tensors are derived, and subsequently, the numerical framework of modeling fracture with the fourth‐order phase field model is implemented in details. Several typical numerical examples are conducted to demonstrate the robustness and effectiveness of the fourth‐order phase field model in simulating the fracture phenomenon of rubber‐like materials.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13495</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Constitutive models ; finite deformation ; fourth‐order phase field model ; fracture ; hyperelastic materials ; Jacobi matrix method ; Jacobian matrix ; Mathematical analysis ; Mathematical models ; Operators (mathematics) ; Robustness (mathematics) ; Shape functions ; Simulation ; spectral decomposition ; Tensors</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2021-09, Vol.44 (9), p.2372-2388</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><rights>2021 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3</citedby><cites>FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3</cites><orcidid>0000-0001-5583-1774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Peng, Fan</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Ma, Yu'e</creatorcontrib><creatorcontrib>Zhang, Zhi‐Qian</creatorcontrib><creatorcontrib>Fu, Nanke</creatorcontrib><title>Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material</title><title>Fatigue & fracture of engineering materials & structures</title><description>We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape function. Therefore, a 5 × 5 Jacobian matrix of isoparametric transformation is constructed. Neo‐Hooken model and Hencky model are adopted as the material constitutive models. The spectral decomposition of stored strain energy is used to distinguish the contributions of tension and compression, and the corresponding stress tensor and constitutive tensors are derived, and subsequently, the numerical framework of modeling fracture with the fourth‐order phase field model is implemented in details. Several typical numerical examples are conducted to demonstrate the robustness and effectiveness of the fourth‐order phase field model in simulating the fracture phenomenon of rubber‐like materials.</description><subject>Constitutive models</subject><subject>finite deformation</subject><subject>fourth‐order phase field model</subject><subject>fracture</subject><subject>hyperelastic materials</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Robustness (mathematics)</subject><subject>Shape functions</subject><subject>Simulation</subject><subject>spectral decomposition</subject><subject>Tensors</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2knsxCOqGkCqxAISW-TYZ-IqqYPtqOrGI_CMPAmBsnLLv3x3v-5D6JqSBZ1maQwsaJYLdoJmNOckSblgp2hWFownBStfz9FFCFtCKM-zbIb6yo0-tl8fn85r8HhoZQBsLHQa905Dh_c2tjgMoKKXHdagXD-4YKN1O2ycx8H2Yyej3b1h46WKowdsd7g9DOChkyFahXsZwVvZXaIzI7sAV385Ry_V-nn1kGye7h9Xd5tEpaJgiaSiJJngvBHAy7QguuEmFZLSRgtNmZQNKENTpmQjOCFaAS9YmjcmLzQByObo5nh38O59hBDr7fTmbqqsU8bKjJWMpxN1e6SUdyF4MPXgbS_9oaak_rFZTzbrX5sTuzyye9vB4X-wrqr1ceMblbt56Q</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Peng, Fan</creator><creator>Huang, Wei</creator><creator>Ma, Yu'e</creator><creator>Zhang, Zhi‐Qian</creator><creator>Fu, Nanke</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5583-1774</orcidid></search><sort><creationdate>202109</creationdate><title>Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material</title><author>Peng, Fan ; Huang, Wei ; Ma, Yu'e ; Zhang, Zhi‐Qian ; Fu, Nanke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Constitutive models</topic><topic>finite deformation</topic><topic>fourth‐order phase field model</topic><topic>fracture</topic><topic>hyperelastic materials</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Robustness (mathematics)</topic><topic>Shape functions</topic><topic>Simulation</topic><topic>spectral decomposition</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Fan</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Ma, Yu'e</creatorcontrib><creatorcontrib>Zhang, Zhi‐Qian</creatorcontrib><creatorcontrib>Fu, Nanke</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Fan</au><au>Huang, Wei</au><au>Ma, Yu'e</au><au>Zhang, Zhi‐Qian</au><au>Fu, Nanke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2021-09</date><risdate>2021</risdate><volume>44</volume><issue>9</issue><spage>2372</spage><epage>2388</epage><pages>2372-2388</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>We present a fourth‐order phase field model for fracture behavior simulations of hyperelastic material undergoing finite deformation. Governing equations of the fourth‐order phase field model consist of the biharmonic operator of the phase field, which requires the second‐order derivatives of shape function. Therefore, a 5 × 5 Jacobian matrix of isoparametric transformation is constructed. Neo‐Hooken model and Hencky model are adopted as the material constitutive models. The spectral decomposition of stored strain energy is used to distinguish the contributions of tension and compression, and the corresponding stress tensor and constitutive tensors are derived, and subsequently, the numerical framework of modeling fracture with the fourth‐order phase field model is implemented in details. Several typical numerical examples are conducted to demonstrate the robustness and effectiveness of the fourth‐order phase field model in simulating the fracture phenomenon of rubber‐like materials.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13495</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5583-1774</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2021-09, Vol.44 (9), p.2372-2388 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2558358562 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Constitutive models finite deformation fourth‐order phase field model fracture hyperelastic materials Jacobi matrix method Jacobian matrix Mathematical analysis Mathematical models Operators (mathematics) Robustness (mathematics) Shape functions Simulation spectral decomposition Tensors |
title | Fourth‐order phase field model with spectral decomposition for simulating fracture in hyperelastic material |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourth%E2%80%90order%20phase%20field%20model%20with%20spectral%20decomposition%20for%20simulating%20fracture%20in%20hyperelastic%20material&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Peng,%20Fan&rft.date=2021-09&rft.volume=44&rft.issue=9&rft.spage=2372&rft.epage=2388&rft.pages=2372-2388&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13495&rft_dat=%3Cproquest_cross%3E2558358562%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2975-a19803966b9e68270db6f29a11bd9d15aabecf125cab9600dce67524bf47d0ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558358562&rft_id=info:pmid/&rfr_iscdi=true |