Loading…
Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources
A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the in...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2017-12, Vol.100 (1), p.12019 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-674c4df808de806621385cf8f08d4c435ba61f23395619b22f73bdcb6064ea443 |
container_end_page | |
container_issue | 1 |
container_start_page | 12019 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 100 |
creator | Zhang, Renping |
description | A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results. |
doi_str_mv | 10.1088/1755-1315/100/1/012019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558400781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558400781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-674c4df808de806621385cf8f08d4c435ba61f23395619b22f73bdcb6064ea443</originalsourceid><addsrcrecordid>eNqFUF1LwzAULaLgnP4FCfhcm48mTR_HUCdMFKbPIU0Tl1GXmqRO_72Zlfno0_0459x7OFl2ieA1gpwXqKI0RwTRAkFYoAIiDFF9lE0OwPGhh9VpdhbCBkJWlaSeZP0qSh_zoQfztfRSRe1tiFYF4AxY7WTXuV0epe10C2afVnb5q3fuI00LLSN4sr0Gw7bVHsS1BsptWxut2_7IH4Yu2r7TI3XlBq90OM9OjOyCvvit0-zl9uZ5vsiXj3f389kyVwSjmCd7qmwNh7zVHDKGEeFUGW7SIiGENpIhgwmpKUN1g7GpSNOqhkFWalmWZJpdjXd7794HHaLYJAPb9FJgSnkJYcVRYrGRpbwLwWsjem_fpP8SCIp9umIfnNiHmMa0EmO6SYhHoXX93-V_RN8rxXvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558400781</pqid></control><display><type>article</type><title>Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources</title><source>ProQuest - Publicly Available Content Database</source><creator>Zhang, Renping</creator><creatorcontrib>Zhang, Renping</creatorcontrib><description>A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/100/1/012019</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Capacitance ; Evaporation ; Evaporators ; Flow rates ; Heat ; Heat pipes ; Heat sources ; Heat transfer ; Mass flow rate ; Mathematical models ; Shear stress ; Velocity ; Wall temperature</subject><ispartof>IOP conference series. Earth and environmental science, 2017-12, Vol.100 (1), p.12019</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-674c4df808de806621385cf8f08d4c435ba61f23395619b22f73bdcb6064ea443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2558400781?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Zhang, Renping</creatorcontrib><title>Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.</description><subject>Capacitance</subject><subject>Evaporation</subject><subject>Evaporators</subject><subject>Flow rates</subject><subject>Heat</subject><subject>Heat pipes</subject><subject>Heat sources</subject><subject>Heat transfer</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Shear stress</subject><subject>Velocity</subject><subject>Wall temperature</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFUF1LwzAULaLgnP4FCfhcm48mTR_HUCdMFKbPIU0Tl1GXmqRO_72Zlfno0_0459x7OFl2ieA1gpwXqKI0RwTRAkFYoAIiDFF9lE0OwPGhh9VpdhbCBkJWlaSeZP0qSh_zoQfztfRSRe1tiFYF4AxY7WTXuV0epe10C2afVnb5q3fuI00LLSN4sr0Gw7bVHsS1BsptWxut2_7IH4Yu2r7TI3XlBq90OM9OjOyCvvit0-zl9uZ5vsiXj3f389kyVwSjmCd7qmwNh7zVHDKGEeFUGW7SIiGENpIhgwmpKUN1g7GpSNOqhkFWalmWZJpdjXd7794HHaLYJAPb9FJgSnkJYcVRYrGRpbwLwWsjem_fpP8SCIp9umIfnNiHmMa0EmO6SYhHoXX93-V_RN8rxXvQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Zhang, Renping</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20171201</creationdate><title>Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources</title><author>Zhang, Renping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-674c4df808de806621385cf8f08d4c435ba61f23395619b22f73bdcb6064ea443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacitance</topic><topic>Evaporation</topic><topic>Evaporators</topic><topic>Flow rates</topic><topic>Heat</topic><topic>Heat pipes</topic><topic>Heat sources</topic><topic>Heat transfer</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Shear stress</topic><topic>Velocity</topic><topic>Wall temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Renping</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Renping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>100</volume><issue>1</issue><spage>12019</spage><pages>12019-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/100/1/012019</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2017-12, Vol.100 (1), p.12019 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2558400781 |
source | ProQuest - Publicly Available Content Database |
subjects | Capacitance Evaporation Evaporators Flow rates Heat Heat pipes Heat sources Heat transfer Mass flow rate Mathematical models Shear stress Velocity Wall temperature |
title | Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Start-up%20Characteristics%20of%20Swallow-tailed%20Axial-grooved%20Heat%20Pipe%20under%20the%20conditions%20of%20Multiple%20Heat%20Sources&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Zhang,%20Renping&rft.date=2017-12-01&rft.volume=100&rft.issue=1&rft.spage=12019&rft.pages=12019-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/100/1/012019&rft_dat=%3Cproquest_cross%3E2558400781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-674c4df808de806621385cf8f08d4c435ba61f23395619b22f73bdcb6064ea443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558400781&rft_id=info:pmid/&rfr_iscdi=true |