Loading…

Electric potential in partially magnetized E × B discharges

Ability to control the electric potential inside the plasma is promising for various applications of E × B plasma because the trajectory of particles, which meets the desired purpose, is mainly determined by the drift motions in the external electric and magnetic fields. In the E × B source, it is w...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2021-08, Vol.11 (8), p.085113-085113-6
Main Authors: Kim, June Young, Choi, Jinyoung, Hwang, Y. S., Chung, Kyoung-Jae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3433-c0b4f8a86380384c6f6104646de192631247778542a7707d55ceff522c1c4e343
cites cdi_FETCH-LOGICAL-c3433-c0b4f8a86380384c6f6104646de192631247778542a7707d55ceff522c1c4e343
container_end_page 085113-6
container_issue 8
container_start_page 085113
container_title AIP advances
container_volume 11
creator Kim, June Young
Choi, Jinyoung
Hwang, Y. S.
Chung, Kyoung-Jae
description Ability to control the electric potential inside the plasma is promising for various applications of E × B plasma because the trajectory of particles, which meets the desired purpose, is mainly determined by the drift motions in the external electric and magnetic fields. In the E × B source, it is well known that the equilibrium states and plasma density and temperature gradient can be sources of plasma instability, which, in turn, affects global plasma parameters. However, the effect of instability on the electric potential has not been verified so far. In this work, correlation of the plasma potential and instability is investigated through simplified-circuit modeling. The consideration of the transverse conductivity of electrons across the magnetic field reflecting the turbulence collision frequency well explains the plasma potential closer to the anode potential despite the presence of negatively biased cathodes. Eventually, this result indicates that the instability can restrict the variation of plasma potential in partially magnetized plasma.
doi_str_mv 10.1063/5.0061693
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2558836617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_81209d8ed95c4c1f885af72620167b94</doaj_id><sourcerecordid>2558836617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3433-c0b4f8a86380384c6f6104646de192631247778542a7707d55ceff522c1c4e343</originalsourceid><addsrcrecordid>eNqdkM1KAzEUhYMoWGoXvsGAK4Wp-U8G3GipWii40XVIM0lNmU7GZBTqi_hAvpgzTlHX3s09XD7OPRwAThGcIsjJJZtCyBEvyAEYYcRkTjDmh3_0MZiktIHd0AJBSUfgal5Z00Zvsia0tm69rjJfZ42Ovax22Vava9v6d1tm8-zzI7vJSp_Ms45rm07AkdNVspP9HoOn2_nj7D5fPtwtZtfL3BBKSG7gijqpJScSEkkNdxxByikvLSowJwhTIYRkFGshoCgZM9Y5hrFBhtrOYgwWg28Z9EY10W913Kmgvfo-hLhWfV5TWSURhkUpbVkwQw1yUjLtBOYYIi5WRe91Nng1Mby82tSqTXiNdRdfYcakJJwj0VHnA2ViSCla9_MVQdV3rZjad92xFwObjG9160P9P_gtxF9QNaUjXx6uiP0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558836617</pqid></control><display><type>article</type><title>Electric potential in partially magnetized E × B discharges</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, June Young ; Choi, Jinyoung ; Hwang, Y. S. ; Chung, Kyoung-Jae</creator><creatorcontrib>Kim, June Young ; Choi, Jinyoung ; Hwang, Y. S. ; Chung, Kyoung-Jae</creatorcontrib><description>Ability to control the electric potential inside the plasma is promising for various applications of E × B plasma because the trajectory of particles, which meets the desired purpose, is mainly determined by the drift motions in the external electric and magnetic fields. In the E × B source, it is well known that the equilibrium states and plasma density and temperature gradient can be sources of plasma instability, which, in turn, affects global plasma parameters. However, the effect of instability on the electric potential has not been verified so far. In this work, correlation of the plasma potential and instability is investigated through simplified-circuit modeling. The consideration of the transverse conductivity of electrons across the magnetic field reflecting the turbulence collision frequency well explains the plasma potential closer to the anode potential despite the presence of negatively biased cathodes. Eventually, this result indicates that the instability can restrict the variation of plasma potential in partially magnetized plasma.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0061693</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Circuits ; Electric potential ; Magnetic fields ; Magnetohydrodynamic stability ; Plasma ; Plasma density ; Stability</subject><ispartof>AIP advances, 2021-08, Vol.11 (8), p.085113-085113-6</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3433-c0b4f8a86380384c6f6104646de192631247778542a7707d55ceff522c1c4e343</citedby><cites>FETCH-LOGICAL-c3433-c0b4f8a86380384c6f6104646de192631247778542a7707d55ceff522c1c4e343</cites><orcidid>0000-0001-6529-3607 ; 0000-0003-3139-2433 ; 0000-0002-4010-9241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0061693$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27888,27922,27923,76178</link.rule.ids></links><search><creatorcontrib>Kim, June Young</creatorcontrib><creatorcontrib>Choi, Jinyoung</creatorcontrib><creatorcontrib>Hwang, Y. S.</creatorcontrib><creatorcontrib>Chung, Kyoung-Jae</creatorcontrib><title>Electric potential in partially magnetized E × B discharges</title><title>AIP advances</title><description>Ability to control the electric potential inside the plasma is promising for various applications of E × B plasma because the trajectory of particles, which meets the desired purpose, is mainly determined by the drift motions in the external electric and magnetic fields. In the E × B source, it is well known that the equilibrium states and plasma density and temperature gradient can be sources of plasma instability, which, in turn, affects global plasma parameters. However, the effect of instability on the electric potential has not been verified so far. In this work, correlation of the plasma potential and instability is investigated through simplified-circuit modeling. The consideration of the transverse conductivity of electrons across the magnetic field reflecting the turbulence collision frequency well explains the plasma potential closer to the anode potential despite the presence of negatively biased cathodes. Eventually, this result indicates that the instability can restrict the variation of plasma potential in partially magnetized plasma.</description><subject>Circuits</subject><subject>Electric potential</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic stability</subject><subject>Plasma</subject><subject>Plasma density</subject><subject>Stability</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNqdkM1KAzEUhYMoWGoXvsGAK4Wp-U8G3GipWii40XVIM0lNmU7GZBTqi_hAvpgzTlHX3s09XD7OPRwAThGcIsjJJZtCyBEvyAEYYcRkTjDmh3_0MZiktIHd0AJBSUfgal5Z00Zvsia0tm69rjJfZ42Ovax22Vava9v6d1tm8-zzI7vJSp_Ms45rm07AkdNVspP9HoOn2_nj7D5fPtwtZtfL3BBKSG7gijqpJScSEkkNdxxByikvLSowJwhTIYRkFGshoCgZM9Y5hrFBhtrOYgwWg28Z9EY10W913Kmgvfo-hLhWfV5TWSURhkUpbVkwQw1yUjLtBOYYIi5WRe91Nng1Mby82tSqTXiNdRdfYcakJJwj0VHnA2ViSCla9_MVQdV3rZjad92xFwObjG9160P9P_gtxF9QNaUjXx6uiP0</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Kim, June Young</creator><creator>Choi, Jinyoung</creator><creator>Hwang, Y. S.</creator><creator>Chung, Kyoung-Jae</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6529-3607</orcidid><orcidid>https://orcid.org/0000-0003-3139-2433</orcidid><orcidid>https://orcid.org/0000-0002-4010-9241</orcidid></search><sort><creationdate>20210801</creationdate><title>Electric potential in partially magnetized E × B discharges</title><author>Kim, June Young ; Choi, Jinyoung ; Hwang, Y. S. ; Chung, Kyoung-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3433-c0b4f8a86380384c6f6104646de192631247778542a7707d55ceff522c1c4e343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>Electric potential</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic stability</topic><topic>Plasma</topic><topic>Plasma density</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, June Young</creatorcontrib><creatorcontrib>Choi, Jinyoung</creatorcontrib><creatorcontrib>Hwang, Y. S.</creatorcontrib><creatorcontrib>Chung, Kyoung-Jae</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, June Young</au><au>Choi, Jinyoung</au><au>Hwang, Y. S.</au><au>Chung, Kyoung-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric potential in partially magnetized E × B discharges</atitle><jtitle>AIP advances</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>11</volume><issue>8</issue><spage>085113</spage><epage>085113-6</epage><pages>085113-085113-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Ability to control the electric potential inside the plasma is promising for various applications of E × B plasma because the trajectory of particles, which meets the desired purpose, is mainly determined by the drift motions in the external electric and magnetic fields. In the E × B source, it is well known that the equilibrium states and plasma density and temperature gradient can be sources of plasma instability, which, in turn, affects global plasma parameters. However, the effect of instability on the electric potential has not been verified so far. In this work, correlation of the plasma potential and instability is investigated through simplified-circuit modeling. The consideration of the transverse conductivity of electrons across the magnetic field reflecting the turbulence collision frequency well explains the plasma potential closer to the anode potential despite the presence of negatively biased cathodes. Eventually, this result indicates that the instability can restrict the variation of plasma potential in partially magnetized plasma.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0061693</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6529-3607</orcidid><orcidid>https://orcid.org/0000-0003-3139-2433</orcidid><orcidid>https://orcid.org/0000-0002-4010-9241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2021-08, Vol.11 (8), p.085113-085113-6
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2558836617
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Circuits
Electric potential
Magnetic fields
Magnetohydrodynamic stability
Plasma
Plasma density
Stability
title Electric potential in partially magnetized E × B discharges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20potential%20in%20partially%20magnetized%20E%20%C3%97%20B%20discharges&rft.jtitle=AIP%20advances&rft.au=Kim,%20June%20Young&rft.date=2021-08-01&rft.volume=11&rft.issue=8&rft.spage=085113&rft.epage=085113-6&rft.pages=085113-085113-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0061693&rft_dat=%3Cproquest_scita%3E2558836617%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3433-c0b4f8a86380384c6f6104646de192631247778542a7707d55ceff522c1c4e343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558836617&rft_id=info:pmid/&rfr_iscdi=true