Loading…
An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target
In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper...
Saved in:
Published in: | Sustainability 2021-08, Vol.13 (15), p.8670 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753 |
container_end_page | |
container_issue | 15 |
container_start_page | 8670 |
container_title | Sustainability |
container_volume | 13 |
creator | Cui, Xiwen E, Shaojun Niu, Dongxiao Wang, Dongyu Li, Mingyu |
description | In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets. |
doi_str_mv | 10.3390/su13158670 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558955851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558955851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753</originalsourceid><addsrcrecordid>eNpNUMtKAzEUDaJgqd34BQF3wmgymUwmyzK0Wqjooq6HPNvpIxmTGcGdv-Hv-SVGK-iFw30dzuUeAC4xuiGEo9s4YIJpVTJ0AkY5YjjDiKLTf_U5mMS4RSkIwRyXI7CbOrg4dMG_Gg3nPhglYt-6NXww_cZrKJyG067bt0r0rXfQW1hvWic-3z8inDkT1m-w9i4Oh-5nPzhtAuw3BtYiyDR4MmIHVyKsTX8BzqzYRzP5zWPwPJ-t6vts-Xi3qKfLTOWc9plmSuiisjK1OeKIUoskRkzKUmnJLUalKiupOS-sEYZxyhjmBWOG2qJglIzB1VE3vfUymNg3Wz8El042OaUVT6A4sa6PLBV8jMHYpgvtQYS3BqPm28_mz0_yBTjFaLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558955851</pqid></control><display><type>article</type><title>An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Cui, Xiwen ; E, Shaojun ; Niu, Dongxiao ; Wang, Dongyu ; Li, Mingyu</creator><creatorcontrib>Cui, Xiwen ; E, Shaojun ; Niu, Dongxiao ; Wang, Dongyu ; Li, Mingyu</creatorcontrib><description>In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su13158670</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alternative energy sources ; Artificial intelligence ; Carbon ; Development policy ; Economic development ; Energy consumption ; Forecasting ; Mathematical models ; Neural networks ; Optimization ; Optimization algorithms ; Pollution ; Support vector machines ; Sustainability ; Sustainable development</subject><ispartof>Sustainability, 2021-08, Vol.13 (15), p.8670</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753</citedby><cites>FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753</cites><orcidid>0000-0003-0292-8534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2558955851/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2558955851?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><creatorcontrib>Cui, Xiwen</creatorcontrib><creatorcontrib>E, Shaojun</creatorcontrib><creatorcontrib>Niu, Dongxiao</creatorcontrib><creatorcontrib>Wang, Dongyu</creatorcontrib><creatorcontrib>Li, Mingyu</creatorcontrib><title>An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target</title><title>Sustainability</title><description>In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Carbon</subject><subject>Development policy</subject><subject>Economic development</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Pollution</subject><subject>Support vector machines</subject><subject>Sustainability</subject><subject>Sustainable development</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUMtKAzEUDaJgqd34BQF3wmgymUwmyzK0Wqjooq6HPNvpIxmTGcGdv-Hv-SVGK-iFw30dzuUeAC4xuiGEo9s4YIJpVTJ0AkY5YjjDiKLTf_U5mMS4RSkIwRyXI7CbOrg4dMG_Gg3nPhglYt-6NXww_cZrKJyG067bt0r0rXfQW1hvWic-3z8inDkT1m-w9i4Oh-5nPzhtAuw3BtYiyDR4MmIHVyKsTX8BzqzYRzP5zWPwPJ-t6vts-Xi3qKfLTOWc9plmSuiisjK1OeKIUoskRkzKUmnJLUalKiupOS-sEYZxyhjmBWOG2qJglIzB1VE3vfUymNg3Wz8El042OaUVT6A4sa6PLBV8jMHYpgvtQYS3BqPm28_mz0_yBTjFaLI</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cui, Xiwen</creator><creator>E, Shaojun</creator><creator>Niu, Dongxiao</creator><creator>Wang, Dongyu</creator><creator>Li, Mingyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0292-8534</orcidid></search><sort><creationdate>20210801</creationdate><title>An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target</title><author>Cui, Xiwen ; E, Shaojun ; Niu, Dongxiao ; Wang, Dongyu ; Li, Mingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Carbon</topic><topic>Development policy</topic><topic>Economic development</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Pollution</topic><topic>Support vector machines</topic><topic>Sustainability</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Xiwen</creatorcontrib><creatorcontrib>E, Shaojun</creatorcontrib><creatorcontrib>Niu, Dongxiao</creatorcontrib><creatorcontrib>Wang, Dongyu</creatorcontrib><creatorcontrib>Li, Mingyu</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Xiwen</au><au>E, Shaojun</au><au>Niu, Dongxiao</au><au>Wang, Dongyu</au><au>Li, Mingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target</atitle><jtitle>Sustainability</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>13</volume><issue>15</issue><spage>8670</spage><pages>8670-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su13158670</doi><orcidid>https://orcid.org/0000-0003-0292-8534</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2021-08, Vol.13 (15), p.8670 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2558955851 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Alternative energy sources Artificial intelligence Carbon Development policy Economic development Energy consumption Forecasting Mathematical models Neural networks Optimization Optimization algorithms Pollution Support vector machines Sustainability Sustainable development |
title | An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T20%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Forecasting%20Method%20and%20Application%20of%20China%E2%80%99s%20Energy%20Consumption%20under%20the%20Carbon%20Peak%20Target&rft.jtitle=Sustainability&rft.au=Cui,%20Xiwen&rft.date=2021-08-01&rft.volume=13&rft.issue=15&rft.spage=8670&rft.pages=8670-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su13158670&rft_dat=%3Cproquest_cross%3E2558955851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558955851&rft_id=info:pmid/&rfr_iscdi=true |