Loading…

An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target

In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2021-08, Vol.13 (15), p.8670
Main Authors: Cui, Xiwen, E, Shaojun, Niu, Dongxiao, Wang, Dongyu, Li, Mingyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753
cites cdi_FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753
container_end_page
container_issue 15
container_start_page 8670
container_title Sustainability
container_volume 13
creator Cui, Xiwen
E, Shaojun
Niu, Dongxiao
Wang, Dongyu
Li, Mingyu
description In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.
doi_str_mv 10.3390/su13158670
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558955851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558955851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753</originalsourceid><addsrcrecordid>eNpNUMtKAzEUDaJgqd34BQF3wmgymUwmyzK0Wqjooq6HPNvpIxmTGcGdv-Hv-SVGK-iFw30dzuUeAC4xuiGEo9s4YIJpVTJ0AkY5YjjDiKLTf_U5mMS4RSkIwRyXI7CbOrg4dMG_Gg3nPhglYt-6NXww_cZrKJyG067bt0r0rXfQW1hvWic-3z8inDkT1m-w9i4Oh-5nPzhtAuw3BtYiyDR4MmIHVyKsTX8BzqzYRzP5zWPwPJ-t6vts-Xi3qKfLTOWc9plmSuiisjK1OeKIUoskRkzKUmnJLUalKiupOS-sEYZxyhjmBWOG2qJglIzB1VE3vfUymNg3Wz8El042OaUVT6A4sa6PLBV8jMHYpgvtQYS3BqPm28_mz0_yBTjFaLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558955851</pqid></control><display><type>article</type><title>An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Cui, Xiwen ; E, Shaojun ; Niu, Dongxiao ; Wang, Dongyu ; Li, Mingyu</creator><creatorcontrib>Cui, Xiwen ; E, Shaojun ; Niu, Dongxiao ; Wang, Dongyu ; Li, Mingyu</creatorcontrib><description>In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su13158670</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alternative energy sources ; Artificial intelligence ; Carbon ; Development policy ; Economic development ; Energy consumption ; Forecasting ; Mathematical models ; Neural networks ; Optimization ; Optimization algorithms ; Pollution ; Support vector machines ; Sustainability ; Sustainable development</subject><ispartof>Sustainability, 2021-08, Vol.13 (15), p.8670</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753</citedby><cites>FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753</cites><orcidid>0000-0003-0292-8534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2558955851/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2558955851?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><creatorcontrib>Cui, Xiwen</creatorcontrib><creatorcontrib>E, Shaojun</creatorcontrib><creatorcontrib>Niu, Dongxiao</creatorcontrib><creatorcontrib>Wang, Dongyu</creatorcontrib><creatorcontrib>Li, Mingyu</creatorcontrib><title>An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target</title><title>Sustainability</title><description>In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Carbon</subject><subject>Development policy</subject><subject>Economic development</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Pollution</subject><subject>Support vector machines</subject><subject>Sustainability</subject><subject>Sustainable development</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUMtKAzEUDaJgqd34BQF3wmgymUwmyzK0Wqjooq6HPNvpIxmTGcGdv-Hv-SVGK-iFw30dzuUeAC4xuiGEo9s4YIJpVTJ0AkY5YjjDiKLTf_U5mMS4RSkIwRyXI7CbOrg4dMG_Gg3nPhglYt-6NXww_cZrKJyG067bt0r0rXfQW1hvWic-3z8inDkT1m-w9i4Oh-5nPzhtAuw3BtYiyDR4MmIHVyKsTX8BzqzYRzP5zWPwPJ-t6vts-Xi3qKfLTOWc9plmSuiisjK1OeKIUoskRkzKUmnJLUalKiupOS-sEYZxyhjmBWOG2qJglIzB1VE3vfUymNg3Wz8El042OaUVT6A4sa6PLBV8jMHYpgvtQYS3BqPm28_mz0_yBTjFaLI</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cui, Xiwen</creator><creator>E, Shaojun</creator><creator>Niu, Dongxiao</creator><creator>Wang, Dongyu</creator><creator>Li, Mingyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0292-8534</orcidid></search><sort><creationdate>20210801</creationdate><title>An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target</title><author>Cui, Xiwen ; E, Shaojun ; Niu, Dongxiao ; Wang, Dongyu ; Li, Mingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Carbon</topic><topic>Development policy</topic><topic>Economic development</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Pollution</topic><topic>Support vector machines</topic><topic>Sustainability</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Xiwen</creatorcontrib><creatorcontrib>E, Shaojun</creatorcontrib><creatorcontrib>Niu, Dongxiao</creatorcontrib><creatorcontrib>Wang, Dongyu</creatorcontrib><creatorcontrib>Li, Mingyu</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Xiwen</au><au>E, Shaojun</au><au>Niu, Dongxiao</au><au>Wang, Dongyu</au><au>Li, Mingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target</atitle><jtitle>Sustainability</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>13</volume><issue>15</issue><spage>8670</spage><pages>8670-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su13158670</doi><orcidid>https://orcid.org/0000-0003-0292-8534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2021-08, Vol.13 (15), p.8670
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2558955851
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Alternative energy sources
Artificial intelligence
Carbon
Development policy
Economic development
Energy consumption
Forecasting
Mathematical models
Neural networks
Optimization
Optimization algorithms
Pollution
Support vector machines
Sustainability
Sustainable development
title An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T20%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Forecasting%20Method%20and%20Application%20of%20China%E2%80%99s%20Energy%20Consumption%20under%20the%20Carbon%20Peak%20Target&rft.jtitle=Sustainability&rft.au=Cui,%20Xiwen&rft.date=2021-08-01&rft.volume=13&rft.issue=15&rft.spage=8670&rft.pages=8670-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su13158670&rft_dat=%3Cproquest_cross%3E2558955851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-d7cad48fbc29209055f0b107bb6cdb9f106c68bd994feae7957719477e5f44753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558955851&rft_id=info:pmid/&rfr_iscdi=true