Loading…

The thresholds of the existence of maximizers for the critical sharp singular Moser–Trudinger inequality under constraints

This paper is addressed to study the existence of maximizers for the singular Moser–Trudinger supremum under constraints in the critical case M T N ( a , β ) = sup u ∈ W 1 , N ( R N ) , ‖ ∇ u ‖ N a + ‖ u ‖ N N = 1 ∫ R N Φ N ( 1 - β / N ) α N | u | N N - 1 | x | - β d x , where a > 0 , β ∈ [ 0 , N...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische annalen 2021-08, Vol.380 (3-4), p.1933-1958
Main Author: Nguyen, Van Hoang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-afd66011c0240b7a4c59fa84ef9bd5a99bced3b8405593fffce4b2fdeb465c113
cites cdi_FETCH-LOGICAL-c319t-afd66011c0240b7a4c59fa84ef9bd5a99bced3b8405593fffce4b2fdeb465c113
container_end_page 1958
container_issue 3-4
container_start_page 1933
container_title Mathematische annalen
container_volume 380
creator Nguyen, Van Hoang
description This paper is addressed to study the existence of maximizers for the singular Moser–Trudinger supremum under constraints in the critical case M T N ( a , β ) = sup u ∈ W 1 , N ( R N ) , ‖ ∇ u ‖ N a + ‖ u ‖ N N = 1 ∫ R N Φ N ( 1 - β / N ) α N | u | N N - 1 | x | - β d x , where a > 0 , β ∈ [ 0 , N ) , Φ N ( t ) = e t - ∑ k = 0 N - 2 t k k ! , α N = N ω N - 1 1 / ( N - 1 ) , and ω N - 1 denotes the surface area of the unit sphere in R N . More precisely, we study the effect of the parameter a to the attainability of M T N ( a , β ) . We will prove that for each β ∈ [ 0 , N ) there exist the thresholds a ∗ ( β ) and a ∗ ( β ) such that M T N ( a , β ) is attained for any a ∈ ( a ∗ ( β ) , a ∗ ( β ) ) and is not attained for a < a ∗ ( β ) or a > a ∗ ( β ) . We also give some qualitative estimates for a ∗ ( β ) and a ∗ ( β ) . Our results complete the recent studies on the sharp Moser–Trudinger type inequality under constraints due to do Ó, Sani and Tarsi (Commun Contemp Math 19:27, 2016), Lam (Proc Am Math Soc 145:4885–4892, 2017; Math Nachr 291(14–15):2272–2287, 2018) and Ikoma, Ishiwata and Wadade (Math Ann 373(1–2):831–851, 2019).
doi_str_mv 10.1007/s00208-020-02010-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559301310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559301310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-afd66011c0240b7a4c59fa84ef9bd5a99bced3b8405593fffce4b2fdeb465c113</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEf4BSJc8Fp2q09ookvaYjLOEdp6tBMXbvFrbQhDvwH_iG_hHRD4sbBtvz8ni0_xi4FXAuA6Q0BxJBFIQ0hIMqO2EgkMo5EBtNjNgrzNEozKU7ZGdESACRAOmIfiwp5V3mkqq1L4q0NHXLcOuqwMTgAK711K_eOnrht_X5uvOuc0TWnSvs1J9e89bX2_Lkl9N-fXwvflwFDz12Dm17XrtvxvikDYNqGOq9d09E5O7G6Jrz4rWP2en-3mD1G85eHp9ntPDJS5F2kbTmZgBAG4gSKqU5MmludJWjzokx1nhcGS1lkCaRpLq21BpMitiUWySQ1QsgxuzrsXft20yN1atn2vgknVTxIQEgBgRUfWMa3RB6tWnu30n6nBKjBZXVwWYWk9i6rLIjkQUSBPDz8t_of1Q-EWoQu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559301310</pqid></control><display><type>article</type><title>The thresholds of the existence of maximizers for the critical sharp singular Moser–Trudinger inequality under constraints</title><source>Springer Nature</source><creator>Nguyen, Van Hoang</creator><creatorcontrib>Nguyen, Van Hoang</creatorcontrib><description>This paper is addressed to study the existence of maximizers for the singular Moser–Trudinger supremum under constraints in the critical case M T N ( a , β ) = sup u ∈ W 1 , N ( R N ) , ‖ ∇ u ‖ N a + ‖ u ‖ N N = 1 ∫ R N Φ N ( 1 - β / N ) α N | u | N N - 1 | x | - β d x , where a &gt; 0 , β ∈ [ 0 , N ) , Φ N ( t ) = e t - ∑ k = 0 N - 2 t k k ! , α N = N ω N - 1 1 / ( N - 1 ) , and ω N - 1 denotes the surface area of the unit sphere in R N . More precisely, we study the effect of the parameter a to the attainability of M T N ( a , β ) . We will prove that for each β ∈ [ 0 , N ) there exist the thresholds a ∗ ( β ) and a ∗ ( β ) such that M T N ( a , β ) is attained for any a ∈ ( a ∗ ( β ) , a ∗ ( β ) ) and is not attained for a &lt; a ∗ ( β ) or a &gt; a ∗ ( β ) . We also give some qualitative estimates for a ∗ ( β ) and a ∗ ( β ) . Our results complete the recent studies on the sharp Moser–Trudinger type inequality under constraints due to do Ó, Sani and Tarsi (Commun Contemp Math 19:27, 2016), Lam (Proc Am Math Soc 145:4885–4892, 2017; Math Nachr 291(14–15):2272–2287, 2018) and Ikoma, Ishiwata and Wadade (Math Ann 373(1–2):831–851, 2019).</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-020-02010-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics ; Thresholds</subject><ispartof>Mathematische annalen, 2021-08, Vol.380 (3-4), p.1933-1958</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-afd66011c0240b7a4c59fa84ef9bd5a99bced3b8405593fffce4b2fdeb465c113</citedby><cites>FETCH-LOGICAL-c319t-afd66011c0240b7a4c59fa84ef9bd5a99bced3b8405593fffce4b2fdeb465c113</cites><orcidid>0000-0002-0030-5811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nguyen, Van Hoang</creatorcontrib><title>The thresholds of the existence of maximizers for the critical sharp singular Moser–Trudinger inequality under constraints</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>This paper is addressed to study the existence of maximizers for the singular Moser–Trudinger supremum under constraints in the critical case M T N ( a , β ) = sup u ∈ W 1 , N ( R N ) , ‖ ∇ u ‖ N a + ‖ u ‖ N N = 1 ∫ R N Φ N ( 1 - β / N ) α N | u | N N - 1 | x | - β d x , where a &gt; 0 , β ∈ [ 0 , N ) , Φ N ( t ) = e t - ∑ k = 0 N - 2 t k k ! , α N = N ω N - 1 1 / ( N - 1 ) , and ω N - 1 denotes the surface area of the unit sphere in R N . More precisely, we study the effect of the parameter a to the attainability of M T N ( a , β ) . We will prove that for each β ∈ [ 0 , N ) there exist the thresholds a ∗ ( β ) and a ∗ ( β ) such that M T N ( a , β ) is attained for any a ∈ ( a ∗ ( β ) , a ∗ ( β ) ) and is not attained for a &lt; a ∗ ( β ) or a &gt; a ∗ ( β ) . We also give some qualitative estimates for a ∗ ( β ) and a ∗ ( β ) . Our results complete the recent studies on the sharp Moser–Trudinger type inequality under constraints due to do Ó, Sani and Tarsi (Commun Contemp Math 19:27, 2016), Lam (Proc Am Math Soc 145:4885–4892, 2017; Math Nachr 291(14–15):2272–2287, 2018) and Ikoma, Ishiwata and Wadade (Math Ann 373(1–2):831–851, 2019).</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Thresholds</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEf4BSJc8Fp2q09ookvaYjLOEdp6tBMXbvFrbQhDvwH_iG_hHRD4sbBtvz8ni0_xi4FXAuA6Q0BxJBFIQ0hIMqO2EgkMo5EBtNjNgrzNEozKU7ZGdESACRAOmIfiwp5V3mkqq1L4q0NHXLcOuqwMTgAK711K_eOnrht_X5uvOuc0TWnSvs1J9e89bX2_Lkl9N-fXwvflwFDz12Dm17XrtvxvikDYNqGOq9d09E5O7G6Jrz4rWP2en-3mD1G85eHp9ntPDJS5F2kbTmZgBAG4gSKqU5MmludJWjzokx1nhcGS1lkCaRpLq21BpMitiUWySQ1QsgxuzrsXft20yN1atn2vgknVTxIQEgBgRUfWMa3RB6tWnu30n6nBKjBZXVwWYWk9i6rLIjkQUSBPDz8t_of1Q-EWoQu</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Nguyen, Van Hoang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0030-5811</orcidid></search><sort><creationdate>20210801</creationdate><title>The thresholds of the existence of maximizers for the critical sharp singular Moser–Trudinger inequality under constraints</title><author>Nguyen, Van Hoang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-afd66011c0240b7a4c59fa84ef9bd5a99bced3b8405593fffce4b2fdeb465c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van Hoang</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Van Hoang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The thresholds of the existence of maximizers for the critical sharp singular Moser–Trudinger inequality under constraints</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>380</volume><issue>3-4</issue><spage>1933</spage><epage>1958</epage><pages>1933-1958</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>This paper is addressed to study the existence of maximizers for the singular Moser–Trudinger supremum under constraints in the critical case M T N ( a , β ) = sup u ∈ W 1 , N ( R N ) , ‖ ∇ u ‖ N a + ‖ u ‖ N N = 1 ∫ R N Φ N ( 1 - β / N ) α N | u | N N - 1 | x | - β d x , where a &gt; 0 , β ∈ [ 0 , N ) , Φ N ( t ) = e t - ∑ k = 0 N - 2 t k k ! , α N = N ω N - 1 1 / ( N - 1 ) , and ω N - 1 denotes the surface area of the unit sphere in R N . More precisely, we study the effect of the parameter a to the attainability of M T N ( a , β ) . We will prove that for each β ∈ [ 0 , N ) there exist the thresholds a ∗ ( β ) and a ∗ ( β ) such that M T N ( a , β ) is attained for any a ∈ ( a ∗ ( β ) , a ∗ ( β ) ) and is not attained for a &lt; a ∗ ( β ) or a &gt; a ∗ ( β ) . We also give some qualitative estimates for a ∗ ( β ) and a ∗ ( β ) . Our results complete the recent studies on the sharp Moser–Trudinger type inequality under constraints due to do Ó, Sani and Tarsi (Commun Contemp Math 19:27, 2016), Lam (Proc Am Math Soc 145:4885–4892, 2017; Math Nachr 291(14–15):2272–2287, 2018) and Ikoma, Ishiwata and Wadade (Math Ann 373(1–2):831–851, 2019).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-020-02010-8</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0030-5811</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2021-08, Vol.380 (3-4), p.1933-1958
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2559301310
source Springer Nature
subjects Mathematics
Mathematics and Statistics
Thresholds
title The thresholds of the existence of maximizers for the critical sharp singular Moser–Trudinger inequality under constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20thresholds%20of%20the%20existence%20of%20maximizers%20for%20the%20critical%20sharp%20singular%20Moser%E2%80%93Trudinger%20inequality%20under%20constraints&rft.jtitle=Mathematische%20annalen&rft.au=Nguyen,%20Van%C2%A0Hoang&rft.date=2021-08-01&rft.volume=380&rft.issue=3-4&rft.spage=1933&rft.epage=1958&rft.pages=1933-1958&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-020-02010-8&rft_dat=%3Cproquest_cross%3E2559301310%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-afd66011c0240b7a4c59fa84ef9bd5a99bced3b8405593fffce4b2fdeb465c113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2559301310&rft_id=info:pmid/&rfr_iscdi=true