Loading…

Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy

The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, a...

Full description

Saved in:
Bibliographic Details
Published in:Geological magazine 2021-09, Vol.158 (9), p.1711-1718
Main Authors: Parnell, John, Brolly, Connor, Boyce, Adrian J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463
cites cdi_FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463
container_end_page 1718
container_issue 9
container_start_page 1711
container_title Geological magazine
container_volume 158
creator Parnell, John
Brolly, Connor
Boyce, Adrian J.
description The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly >1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.
doi_str_mv 10.1017/S0016756821000583
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559412821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0016756821000583</cupid><sourcerecordid>2559412821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeAj1pNmqRLH2XoFAYK0-dySa9dR9fMpEPmpzdlAwXx6Tjud_c7_oRccnbLGZ_cLRjj2URlOuWMMaXFERlxmeWJYpofk9EwTob5KTkLYRVbwbQekcXMw2bZ9Egr79b0FVpAt_GuR---XGMpdkvoLJbUgjeuo2brG2hvKHQlbfpA19hD27oauwi3WIPdnZOTCtqAF4c6Ju-PD2_Tp2T-Mnue3s8TkFr1iRICpTTcKFVhjiUY4EqBkAZsnuY2Y2pidSVyJkXKhSm11DyvQHKIiMzEmFzt78Z_P7YY-mLltr6LyiJVKpc8jWlEiu8p610IHqti45s1-F3BWTFkV_zJLu5c73dqdME2GAP4dL4tfwlYyguWMSkHgzgYYG18U9b4w_3v-Ab1uX9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559412821</pqid></control><display><type>article</type><title>Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy</title><source>Cambridge University Press</source><creator>Parnell, John ; Brolly, Connor ; Boyce, Adrian J.</creator><creatorcontrib>Parnell, John ; Brolly, Connor ; Boyce, Adrian J.</creatorcontrib><description>The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly &gt;1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.</description><identifier>ISSN: 0016-7568</identifier><identifier>EISSN: 1469-5081</identifier><identifier>DOI: 10.1017/S0016756821000583</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>anaerobic environment ; Anoxia ; black shale ; burial ; C-13/C-12 ; Carbon ; Carbon dioxide ; clastic rocks ; cobalt ores ; Copper ; copper ores ; crust ; Datasets ; Deposition ; Deposits ; Economic geology ; Graphite ; graphite deposits ; graphitization ; isotope ratios ; Isotopes ; Lava ; mafic composition ; Mafic magma ; Magma ; Mesoproterozoic ; metal ores ; Metallogenesis ; metallogeny ; metals ; Metamorphism ; mineral deposits, genesis ; mineral exploration ; Mineralization ; nickel ores ; Organic carbon ; organic compounds ; paleoenvironment ; Paleoproterozoic ; platinum group ; platinum ores ; Precambrian ; Proterozoic ; Pyrite ; Sedimentary rocks ; Sediments ; Shale ; stable isotopes ; sulfides ; Sulfur ; Sulphur ; total organic carbon ; upper Precambrian ; Uranium ; uranium ores</subject><ispartof>Geological magazine, 2021-09, Vol.158 (9), p.1711-1718</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>GeoRef, Copyright 2021, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re- use, distribution and reproduction, provided the original article is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463</citedby><cites>FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463</cites><orcidid>0000-0002-5862-6933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0016756821000583/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids></links><search><creatorcontrib>Parnell, John</creatorcontrib><creatorcontrib>Brolly, Connor</creatorcontrib><creatorcontrib>Boyce, Adrian J.</creatorcontrib><title>Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy</title><title>Geological magazine</title><addtitle>Geol. Mag</addtitle><description>The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly &gt;1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.</description><subject>anaerobic environment</subject><subject>Anoxia</subject><subject>black shale</subject><subject>burial</subject><subject>C-13/C-12</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>clastic rocks</subject><subject>cobalt ores</subject><subject>Copper</subject><subject>copper ores</subject><subject>crust</subject><subject>Datasets</subject><subject>Deposition</subject><subject>Deposits</subject><subject>Economic geology</subject><subject>Graphite</subject><subject>graphite deposits</subject><subject>graphitization</subject><subject>isotope ratios</subject><subject>Isotopes</subject><subject>Lava</subject><subject>mafic composition</subject><subject>Mafic magma</subject><subject>Magma</subject><subject>Mesoproterozoic</subject><subject>metal ores</subject><subject>Metallogenesis</subject><subject>metallogeny</subject><subject>metals</subject><subject>Metamorphism</subject><subject>mineral deposits, genesis</subject><subject>mineral exploration</subject><subject>Mineralization</subject><subject>nickel ores</subject><subject>Organic carbon</subject><subject>organic compounds</subject><subject>paleoenvironment</subject><subject>Paleoproterozoic</subject><subject>platinum group</subject><subject>platinum ores</subject><subject>Precambrian</subject><subject>Proterozoic</subject><subject>Pyrite</subject><subject>Sedimentary rocks</subject><subject>Sediments</subject><subject>Shale</subject><subject>stable isotopes</subject><subject>sulfides</subject><subject>Sulfur</subject><subject>Sulphur</subject><subject>total organic carbon</subject><subject>upper Precambrian</subject><subject>Uranium</subject><subject>uranium ores</subject><issn>0016-7568</issn><issn>1469-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKcfwLeAj1pNmqRLH2XoFAYK0-dySa9dR9fMpEPmpzdlAwXx6Tjud_c7_oRccnbLGZ_cLRjj2URlOuWMMaXFERlxmeWJYpofk9EwTob5KTkLYRVbwbQekcXMw2bZ9Egr79b0FVpAt_GuR---XGMpdkvoLJbUgjeuo2brG2hvKHQlbfpA19hD27oauwi3WIPdnZOTCtqAF4c6Ju-PD2_Tp2T-Mnue3s8TkFr1iRICpTTcKFVhjiUY4EqBkAZsnuY2Y2pidSVyJkXKhSm11DyvQHKIiMzEmFzt78Z_P7YY-mLltr6LyiJVKpc8jWlEiu8p610IHqti45s1-F3BWTFkV_zJLu5c73dqdME2GAP4dL4tfwlYyguWMSkHgzgYYG18U9b4w_3v-Ab1uX9I</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Parnell, John</creator><creator>Brolly, Connor</creator><creator>Boyce, Adrian J.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0002-5862-6933</orcidid></search><sort><creationdate>20210901</creationdate><title>Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy</title><author>Parnell, John ; Brolly, Connor ; Boyce, Adrian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anaerobic environment</topic><topic>Anoxia</topic><topic>black shale</topic><topic>burial</topic><topic>C-13/C-12</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>clastic rocks</topic><topic>cobalt ores</topic><topic>Copper</topic><topic>copper ores</topic><topic>crust</topic><topic>Datasets</topic><topic>Deposition</topic><topic>Deposits</topic><topic>Economic geology</topic><topic>Graphite</topic><topic>graphite deposits</topic><topic>graphitization</topic><topic>isotope ratios</topic><topic>Isotopes</topic><topic>Lava</topic><topic>mafic composition</topic><topic>Mafic magma</topic><topic>Magma</topic><topic>Mesoproterozoic</topic><topic>metal ores</topic><topic>Metallogenesis</topic><topic>metallogeny</topic><topic>metals</topic><topic>Metamorphism</topic><topic>mineral deposits, genesis</topic><topic>mineral exploration</topic><topic>Mineralization</topic><topic>nickel ores</topic><topic>Organic carbon</topic><topic>organic compounds</topic><topic>paleoenvironment</topic><topic>Paleoproterozoic</topic><topic>platinum group</topic><topic>platinum ores</topic><topic>Precambrian</topic><topic>Proterozoic</topic><topic>Pyrite</topic><topic>Sedimentary rocks</topic><topic>Sediments</topic><topic>Shale</topic><topic>stable isotopes</topic><topic>sulfides</topic><topic>Sulfur</topic><topic>Sulphur</topic><topic>total organic carbon</topic><topic>upper Precambrian</topic><topic>Uranium</topic><topic>uranium ores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parnell, John</creatorcontrib><creatorcontrib>Brolly, Connor</creatorcontrib><creatorcontrib>Boyce, Adrian J.</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Geological magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parnell, John</au><au>Brolly, Connor</au><au>Boyce, Adrian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy</atitle><jtitle>Geological magazine</jtitle><addtitle>Geol. Mag</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>158</volume><issue>9</issue><spage>1711</spage><epage>1718</epage><pages>1711-1718</pages><issn>0016-7568</issn><eissn>1469-5081</eissn><abstract>The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly &gt;1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0016756821000583</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5862-6933</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7568
ispartof Geological magazine, 2021-09, Vol.158 (9), p.1711-1718
issn 0016-7568
1469-5081
language eng
recordid cdi_proquest_journals_2559412821
source Cambridge University Press
subjects anaerobic environment
Anoxia
black shale
burial
C-13/C-12
Carbon
Carbon dioxide
clastic rocks
cobalt ores
Copper
copper ores
crust
Datasets
Deposition
Deposits
Economic geology
Graphite
graphite deposits
graphitization
isotope ratios
Isotopes
Lava
mafic composition
Mafic magma
Magma
Mesoproterozoic
metal ores
Metallogenesis
metallogeny
metals
Metamorphism
mineral deposits, genesis
mineral exploration
Mineralization
nickel ores
Organic carbon
organic compounds
paleoenvironment
Paleoproterozoic
platinum group
platinum ores
Precambrian
Proterozoic
Pyrite
Sedimentary rocks
Sediments
Shale
stable isotopes
sulfides
Sulfur
Sulphur
total organic carbon
upper Precambrian
Uranium
uranium ores
title Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphite%20from%20Palaeoproterozoic%20enhanced%20carbon%20burial,%20and%20its%20metallogenic%20legacy&rft.jtitle=Geological%20magazine&rft.au=Parnell,%20John&rft.date=2021-09-01&rft.volume=158&rft.issue=9&rft.spage=1711&rft.epage=1718&rft.pages=1711-1718&rft.issn=0016-7568&rft.eissn=1469-5081&rft_id=info:doi/10.1017/S0016756821000583&rft_dat=%3Cproquest_cross%3E2559412821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2559412821&rft_id=info:pmid/&rft_cupid=10_1017_S0016756821000583&rfr_iscdi=true