Loading…
Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy
The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, a...
Saved in:
Published in: | Geological magazine 2021-09, Vol.158 (9), p.1711-1718 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463 |
---|---|
cites | cdi_FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463 |
container_end_page | 1718 |
container_issue | 9 |
container_start_page | 1711 |
container_title | Geological magazine |
container_volume | 158 |
creator | Parnell, John Brolly, Connor Boyce, Adrian J. |
description | The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly >1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition. |
doi_str_mv | 10.1017/S0016756821000583 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559412821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0016756821000583</cupid><sourcerecordid>2559412821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeAj1pNmqRLH2XoFAYK0-dySa9dR9fMpEPmpzdlAwXx6Tjud_c7_oRccnbLGZ_cLRjj2URlOuWMMaXFERlxmeWJYpofk9EwTob5KTkLYRVbwbQekcXMw2bZ9Egr79b0FVpAt_GuR---XGMpdkvoLJbUgjeuo2brG2hvKHQlbfpA19hD27oauwi3WIPdnZOTCtqAF4c6Ju-PD2_Tp2T-Mnue3s8TkFr1iRICpTTcKFVhjiUY4EqBkAZsnuY2Y2pidSVyJkXKhSm11DyvQHKIiMzEmFzt78Z_P7YY-mLltr6LyiJVKpc8jWlEiu8p610IHqti45s1-F3BWTFkV_zJLu5c73dqdME2GAP4dL4tfwlYyguWMSkHgzgYYG18U9b4w_3v-Ab1uX9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559412821</pqid></control><display><type>article</type><title>Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy</title><source>Cambridge University Press</source><creator>Parnell, John ; Brolly, Connor ; Boyce, Adrian J.</creator><creatorcontrib>Parnell, John ; Brolly, Connor ; Boyce, Adrian J.</creatorcontrib><description>The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly >1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.</description><identifier>ISSN: 0016-7568</identifier><identifier>EISSN: 1469-5081</identifier><identifier>DOI: 10.1017/S0016756821000583</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>anaerobic environment ; Anoxia ; black shale ; burial ; C-13/C-12 ; Carbon ; Carbon dioxide ; clastic rocks ; cobalt ores ; Copper ; copper ores ; crust ; Datasets ; Deposition ; Deposits ; Economic geology ; Graphite ; graphite deposits ; graphitization ; isotope ratios ; Isotopes ; Lava ; mafic composition ; Mafic magma ; Magma ; Mesoproterozoic ; metal ores ; Metallogenesis ; metallogeny ; metals ; Metamorphism ; mineral deposits, genesis ; mineral exploration ; Mineralization ; nickel ores ; Organic carbon ; organic compounds ; paleoenvironment ; Paleoproterozoic ; platinum group ; platinum ores ; Precambrian ; Proterozoic ; Pyrite ; Sedimentary rocks ; Sediments ; Shale ; stable isotopes ; sulfides ; Sulfur ; Sulphur ; total organic carbon ; upper Precambrian ; Uranium ; uranium ores</subject><ispartof>Geological magazine, 2021-09, Vol.158 (9), p.1711-1718</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>GeoRef, Copyright 2021, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re- use, distribution and reproduction, provided the original article is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463</citedby><cites>FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463</cites><orcidid>0000-0002-5862-6933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0016756821000583/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids></links><search><creatorcontrib>Parnell, John</creatorcontrib><creatorcontrib>Brolly, Connor</creatorcontrib><creatorcontrib>Boyce, Adrian J.</creatorcontrib><title>Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy</title><title>Geological magazine</title><addtitle>Geol. Mag</addtitle><description>The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly >1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.</description><subject>anaerobic environment</subject><subject>Anoxia</subject><subject>black shale</subject><subject>burial</subject><subject>C-13/C-12</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>clastic rocks</subject><subject>cobalt ores</subject><subject>Copper</subject><subject>copper ores</subject><subject>crust</subject><subject>Datasets</subject><subject>Deposition</subject><subject>Deposits</subject><subject>Economic geology</subject><subject>Graphite</subject><subject>graphite deposits</subject><subject>graphitization</subject><subject>isotope ratios</subject><subject>Isotopes</subject><subject>Lava</subject><subject>mafic composition</subject><subject>Mafic magma</subject><subject>Magma</subject><subject>Mesoproterozoic</subject><subject>metal ores</subject><subject>Metallogenesis</subject><subject>metallogeny</subject><subject>metals</subject><subject>Metamorphism</subject><subject>mineral deposits, genesis</subject><subject>mineral exploration</subject><subject>Mineralization</subject><subject>nickel ores</subject><subject>Organic carbon</subject><subject>organic compounds</subject><subject>paleoenvironment</subject><subject>Paleoproterozoic</subject><subject>platinum group</subject><subject>platinum ores</subject><subject>Precambrian</subject><subject>Proterozoic</subject><subject>Pyrite</subject><subject>Sedimentary rocks</subject><subject>Sediments</subject><subject>Shale</subject><subject>stable isotopes</subject><subject>sulfides</subject><subject>Sulfur</subject><subject>Sulphur</subject><subject>total organic carbon</subject><subject>upper Precambrian</subject><subject>Uranium</subject><subject>uranium ores</subject><issn>0016-7568</issn><issn>1469-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKcfwLeAj1pNmqRLH2XoFAYK0-dySa9dR9fMpEPmpzdlAwXx6Tjud_c7_oRccnbLGZ_cLRjj2URlOuWMMaXFERlxmeWJYpofk9EwTob5KTkLYRVbwbQekcXMw2bZ9Egr79b0FVpAt_GuR---XGMpdkvoLJbUgjeuo2brG2hvKHQlbfpA19hD27oauwi3WIPdnZOTCtqAF4c6Ju-PD2_Tp2T-Mnue3s8TkFr1iRICpTTcKFVhjiUY4EqBkAZsnuY2Y2pidSVyJkXKhSm11DyvQHKIiMzEmFzt78Z_P7YY-mLltr6LyiJVKpc8jWlEiu8p610IHqti45s1-F3BWTFkV_zJLu5c73dqdME2GAP4dL4tfwlYyguWMSkHgzgYYG18U9b4w_3v-Ab1uX9I</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Parnell, John</creator><creator>Brolly, Connor</creator><creator>Boyce, Adrian J.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0002-5862-6933</orcidid></search><sort><creationdate>20210901</creationdate><title>Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy</title><author>Parnell, John ; Brolly, Connor ; Boyce, Adrian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anaerobic environment</topic><topic>Anoxia</topic><topic>black shale</topic><topic>burial</topic><topic>C-13/C-12</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>clastic rocks</topic><topic>cobalt ores</topic><topic>Copper</topic><topic>copper ores</topic><topic>crust</topic><topic>Datasets</topic><topic>Deposition</topic><topic>Deposits</topic><topic>Economic geology</topic><topic>Graphite</topic><topic>graphite deposits</topic><topic>graphitization</topic><topic>isotope ratios</topic><topic>Isotopes</topic><topic>Lava</topic><topic>mafic composition</topic><topic>Mafic magma</topic><topic>Magma</topic><topic>Mesoproterozoic</topic><topic>metal ores</topic><topic>Metallogenesis</topic><topic>metallogeny</topic><topic>metals</topic><topic>Metamorphism</topic><topic>mineral deposits, genesis</topic><topic>mineral exploration</topic><topic>Mineralization</topic><topic>nickel ores</topic><topic>Organic carbon</topic><topic>organic compounds</topic><topic>paleoenvironment</topic><topic>Paleoproterozoic</topic><topic>platinum group</topic><topic>platinum ores</topic><topic>Precambrian</topic><topic>Proterozoic</topic><topic>Pyrite</topic><topic>Sedimentary rocks</topic><topic>Sediments</topic><topic>Shale</topic><topic>stable isotopes</topic><topic>sulfides</topic><topic>Sulfur</topic><topic>Sulphur</topic><topic>total organic carbon</topic><topic>upper Precambrian</topic><topic>Uranium</topic><topic>uranium ores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parnell, John</creatorcontrib><creatorcontrib>Brolly, Connor</creatorcontrib><creatorcontrib>Boyce, Adrian J.</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Geological magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parnell, John</au><au>Brolly, Connor</au><au>Boyce, Adrian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy</atitle><jtitle>Geological magazine</jtitle><addtitle>Geol. Mag</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>158</volume><issue>9</issue><spage>1711</spage><epage>1718</epage><pages>1711-1718</pages><issn>0016-7568</issn><eissn>1469-5081</eissn><abstract>The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly >1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0016756821000583</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5862-6933</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7568 |
ispartof | Geological magazine, 2021-09, Vol.158 (9), p.1711-1718 |
issn | 0016-7568 1469-5081 |
language | eng |
recordid | cdi_proquest_journals_2559412821 |
source | Cambridge University Press |
subjects | anaerobic environment Anoxia black shale burial C-13/C-12 Carbon Carbon dioxide clastic rocks cobalt ores Copper copper ores crust Datasets Deposition Deposits Economic geology Graphite graphite deposits graphitization isotope ratios Isotopes Lava mafic composition Mafic magma Magma Mesoproterozoic metal ores Metallogenesis metallogeny metals Metamorphism mineral deposits, genesis mineral exploration Mineralization nickel ores Organic carbon organic compounds paleoenvironment Paleoproterozoic platinum group platinum ores Precambrian Proterozoic Pyrite Sedimentary rocks Sediments Shale stable isotopes sulfides Sulfur Sulphur total organic carbon upper Precambrian Uranium uranium ores |
title | Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphite%20from%20Palaeoproterozoic%20enhanced%20carbon%20burial,%20and%20its%20metallogenic%20legacy&rft.jtitle=Geological%20magazine&rft.au=Parnell,%20John&rft.date=2021-09-01&rft.volume=158&rft.issue=9&rft.spage=1711&rft.epage=1718&rft.pages=1711-1718&rft.issn=0016-7568&rft.eissn=1469-5081&rft_id=info:doi/10.1017/S0016756821000583&rft_dat=%3Cproquest_cross%3E2559412821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a485t-533e44b1b55fe9edaba155a34bac929c6057c8f39043213bd84819fa41a4ba463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2559412821&rft_id=info:pmid/&rft_cupid=10_1017_S0016756821000583&rfr_iscdi=true |