Loading…
Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)
Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected....
Saved in:
Published in: | Geological magazine 2021-09, Vol.158 (9), p.1683-1703 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173 |
---|---|
cites | cdi_FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173 |
container_end_page | 1703 |
container_issue | 9 |
container_start_page | 1683 |
container_title | Geological magazine |
container_volume | 158 |
creator | Elorza, Javier Gómez-Alday, Juan José Jiménez Berrocoso, Álvaro |
description | Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected. Five types of marl–limestone couplets are identified based on the colour, and a high maximum sedimentation rate (3.6 cm ka–1 ) is noted. The oxidizing activity of deep, cold-water masses is indicated by the oxygen isotope signal in the lower–upper Maastrichtian and Danian sections and the presence of the boreal inoceramid Spyridoceramus tegulatus. In theory, the variation in colour from grey to greenish-yellow, purple and pink up to red tones correlates with the Fe2+/(Fe2++Fe3+) ratio. It is interpreted as the possible palaeoenvironmental transit of particles that sediment out slowly in oxic environments when they circulate through cooler, oxidizing water masses. The colour is considered to be a depositional feature, and hematite, detected by X-ray diffraction, is the main staining agent, without discarding the possible redistribution of previous oxyhydroxides passing to hematite as a final product. The cell filling of the foraminifer shells does not incorporate appreciable amounts of Fe and Mg during diagenesis. Bacterial activity is detected using scanning electron microscopy images, both in the coccolith debris and in the detrital micas, although there is uncertainty as to its importance in the staining process. |
doi_str_mv | 10.1017/S0016756821000248 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559415242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0016756821000248</cupid><sourcerecordid>2559415242</sourcerecordid><originalsourceid>FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173</originalsourceid><addsrcrecordid>eNp1UE1LJDEQDeKCo-sP8Bbwoki7qSQ96famgx8LgofRc1OTTsbITNImPYon9z_4D_0lm3YEF2QvFaree_VSj5A9YMfAQP2aMgZjVY4rDowxLqsNMgI5rouSVbBJRgNcDPgW2U7pIbeCVdWIvE5ffGu6kFzvgscF7WLQJiWTqPO0vze0c_Ol8T0OOA2WZhi90zSals5Mm06oeXKt8dpQG8PyQ3OG6XFl3v-8TTArZ9GhH2Z544EPMTOip9MOnT_8SX5YXCSz-_nukLuL89vJVXF9c_l7cnpdoIS6L1qFleA1amutKIUEiUparKwCYEIr3tZCcTCc1ULDDARWGpWqc-WyBCV2yP56b74vfy31zUNYxXxwanhZ1hJKLnlmwZqlY0gpGtt00S0xvjTAmiHn5lvOWXO01sxNSNoNQTyHuGj_MWAcGjZm8oMtPh1wmXNp5-aL93-Pv_NCj5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559415242</pqid></control><display><type>article</type><title>Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)</title><source>Cambridge Journals Online</source><creator>Elorza, Javier ; Gómez-Alday, Juan José ; Jiménez Berrocoso, Álvaro</creator><creatorcontrib>Elorza, Javier ; Gómez-Alday, Juan José ; Jiménez Berrocoso, Álvaro</creatorcontrib><description>Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected. Five types of marl–limestone couplets are identified based on the colour, and a high maximum sedimentation rate (3.6 cm ka–1 ) is noted. The oxidizing activity of deep, cold-water masses is indicated by the oxygen isotope signal in the lower–upper Maastrichtian and Danian sections and the presence of the boreal inoceramid Spyridoceramus tegulatus. In theory, the variation in colour from grey to greenish-yellow, purple and pink up to red tones correlates with the Fe2+/(Fe2++Fe3+) ratio. It is interpreted as the possible palaeoenvironmental transit of particles that sediment out slowly in oxic environments when they circulate through cooler, oxidizing water masses. The colour is considered to be a depositional feature, and hematite, detected by X-ray diffraction, is the main staining agent, without discarding the possible redistribution of previous oxyhydroxides passing to hematite as a final product. The cell filling of the foraminifer shells does not incorporate appreciable amounts of Fe and Mg during diagenesis. Bacterial activity is detected using scanning electron microscopy images, both in the coccolith debris and in the detrital micas, although there is uncertainty as to its importance in the staining process.</description><identifier>ISSN: 0016-7568</identifier><identifier>EISSN: 1469-5081</identifier><identifier>DOI: 10.1017/S0016756821000248</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>aerobic environment ; Atlantic Ocean ; Bacteria ; Basque Provinces Spain ; Bay of Biscay ; burial diagenesis ; C-13/C-12 ; calcium carbonate ; Cantabrian Basin ; Carbon ; carbonate rocks ; Cenozoic ; clastic rocks ; Coccoliths ; Cold water masses ; Color ; Colour ; concentration ; Cretaceous ; Danian ; deep-sea environment ; deposition ; Diagenesis ; dissolved oxygen ; early diagenesis ; Electron microscopy ; electron microscopy data ; Europe ; ferric iron ; ferrous iron ; Geochemistry ; Geology ; Haematite ; Hematite ; Iberian Peninsula ; Iron ; isotope ratios ; isotopes ; late diagenesis ; Limestone ; lower Maestrichtian ; lower Paleocene ; lower Turonian ; Maestrichtian ; marine environment ; Marl ; Mesozoic ; metals ; Micas ; North Atlantic ; O-18/O-16 ; Original Article ; Oxidation ; oxides ; oxygen ; Oxygen isotopes ; Paleocene ; paleoenvironment ; Paleogene ; Pigmentation ; pigments ; preservation ; red beds ; Scanning electron microscopy ; Seawater ; sed rocks, sediments ; Sedimentary petrology ; sedimentary rocks ; Sedimentation & deposition ; sedimentation rates ; Sediments ; SEM data ; solutes ; Southern Europe ; Spain ; stable isotopes ; Staining ; synsedimentary processes ; Tertiary ; Turonian ; unconsolidated materials ; Upper Cretaceous ; upper Maestrichtian ; Water masses ; Water temperature ; X-ray diffraction ; X-ray diffraction data</subject><ispartof>Geological magazine, 2021-09, Vol.158 (9), p.1683-1703</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>GeoRef, Copyright 2021, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Pressmust be obtained for commercial re-use. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173</citedby><cites>FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173</cites><orcidid>0000-0003-3735-9407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0016756821000248/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Elorza, Javier</creatorcontrib><creatorcontrib>Gómez-Alday, Juan José</creatorcontrib><creatorcontrib>Jiménez Berrocoso, Álvaro</creatorcontrib><title>Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)</title><title>Geological magazine</title><addtitle>Geol. Mag</addtitle><description>Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected. Five types of marl–limestone couplets are identified based on the colour, and a high maximum sedimentation rate (3.6 cm ka–1 ) is noted. The oxidizing activity of deep, cold-water masses is indicated by the oxygen isotope signal in the lower–upper Maastrichtian and Danian sections and the presence of the boreal inoceramid Spyridoceramus tegulatus. In theory, the variation in colour from grey to greenish-yellow, purple and pink up to red tones correlates with the Fe2+/(Fe2++Fe3+) ratio. It is interpreted as the possible palaeoenvironmental transit of particles that sediment out slowly in oxic environments when they circulate through cooler, oxidizing water masses. The colour is considered to be a depositional feature, and hematite, detected by X-ray diffraction, is the main staining agent, without discarding the possible redistribution of previous oxyhydroxides passing to hematite as a final product. The cell filling of the foraminifer shells does not incorporate appreciable amounts of Fe and Mg during diagenesis. Bacterial activity is detected using scanning electron microscopy images, both in the coccolith debris and in the detrital micas, although there is uncertainty as to its importance in the staining process.</description><subject>aerobic environment</subject><subject>Atlantic Ocean</subject><subject>Bacteria</subject><subject>Basque Provinces Spain</subject><subject>Bay of Biscay</subject><subject>burial diagenesis</subject><subject>C-13/C-12</subject><subject>calcium carbonate</subject><subject>Cantabrian Basin</subject><subject>Carbon</subject><subject>carbonate rocks</subject><subject>Cenozoic</subject><subject>clastic rocks</subject><subject>Coccoliths</subject><subject>Cold water masses</subject><subject>Color</subject><subject>Colour</subject><subject>concentration</subject><subject>Cretaceous</subject><subject>Danian</subject><subject>deep-sea environment</subject><subject>deposition</subject><subject>Diagenesis</subject><subject>dissolved oxygen</subject><subject>early diagenesis</subject><subject>Electron microscopy</subject><subject>electron microscopy data</subject><subject>Europe</subject><subject>ferric iron</subject><subject>ferrous iron</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Haematite</subject><subject>Hematite</subject><subject>Iberian Peninsula</subject><subject>Iron</subject><subject>isotope ratios</subject><subject>isotopes</subject><subject>late diagenesis</subject><subject>Limestone</subject><subject>lower Maestrichtian</subject><subject>lower Paleocene</subject><subject>lower Turonian</subject><subject>Maestrichtian</subject><subject>marine environment</subject><subject>Marl</subject><subject>Mesozoic</subject><subject>metals</subject><subject>Micas</subject><subject>North Atlantic</subject><subject>O-18/O-16</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>oxides</subject><subject>oxygen</subject><subject>Oxygen isotopes</subject><subject>Paleocene</subject><subject>paleoenvironment</subject><subject>Paleogene</subject><subject>Pigmentation</subject><subject>pigments</subject><subject>preservation</subject><subject>red beds</subject><subject>Scanning electron microscopy</subject><subject>Seawater</subject><subject>sed rocks, sediments</subject><subject>Sedimentary petrology</subject><subject>sedimentary rocks</subject><subject>Sedimentation & deposition</subject><subject>sedimentation rates</subject><subject>Sediments</subject><subject>SEM data</subject><subject>solutes</subject><subject>Southern Europe</subject><subject>Spain</subject><subject>stable isotopes</subject><subject>Staining</subject><subject>synsedimentary processes</subject><subject>Tertiary</subject><subject>Turonian</subject><subject>unconsolidated materials</subject><subject>Upper Cretaceous</subject><subject>upper Maestrichtian</subject><subject>Water masses</subject><subject>Water temperature</subject><subject>X-ray diffraction</subject><subject>X-ray diffraction data</subject><issn>0016-7568</issn><issn>1469-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LJDEQDeKCo-sP8Bbwoki7qSQ96famgx8LgofRc1OTTsbITNImPYon9z_4D_0lm3YEF2QvFaree_VSj5A9YMfAQP2aMgZjVY4rDowxLqsNMgI5rouSVbBJRgNcDPgW2U7pIbeCVdWIvE5ffGu6kFzvgscF7WLQJiWTqPO0vze0c_Ol8T0OOA2WZhi90zSals5Mm06oeXKt8dpQG8PyQ3OG6XFl3v-8TTArZ9GhH2Z544EPMTOip9MOnT_8SX5YXCSz-_nukLuL89vJVXF9c_l7cnpdoIS6L1qFleA1amutKIUEiUparKwCYEIr3tZCcTCc1ULDDARWGpWqc-WyBCV2yP56b74vfy31zUNYxXxwanhZ1hJKLnlmwZqlY0gpGtt00S0xvjTAmiHn5lvOWXO01sxNSNoNQTyHuGj_MWAcGjZm8oMtPh1wmXNp5-aL93-Pv_NCj5Y</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Elorza, Javier</creator><creator>Gómez-Alday, Juan José</creator><creator>Jiménez Berrocoso, Álvaro</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0003-3735-9407</orcidid></search><sort><creationdate>202109</creationdate><title>Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)</title><author>Elorza, Javier ; Gómez-Alday, Juan José ; Jiménez Berrocoso, Álvaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aerobic environment</topic><topic>Atlantic Ocean</topic><topic>Bacteria</topic><topic>Basque Provinces Spain</topic><topic>Bay of Biscay</topic><topic>burial diagenesis</topic><topic>C-13/C-12</topic><topic>calcium carbonate</topic><topic>Cantabrian Basin</topic><topic>Carbon</topic><topic>carbonate rocks</topic><topic>Cenozoic</topic><topic>clastic rocks</topic><topic>Coccoliths</topic><topic>Cold water masses</topic><topic>Color</topic><topic>Colour</topic><topic>concentration</topic><topic>Cretaceous</topic><topic>Danian</topic><topic>deep-sea environment</topic><topic>deposition</topic><topic>Diagenesis</topic><topic>dissolved oxygen</topic><topic>early diagenesis</topic><topic>Electron microscopy</topic><topic>electron microscopy data</topic><topic>Europe</topic><topic>ferric iron</topic><topic>ferrous iron</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Haematite</topic><topic>Hematite</topic><topic>Iberian Peninsula</topic><topic>Iron</topic><topic>isotope ratios</topic><topic>isotopes</topic><topic>late diagenesis</topic><topic>Limestone</topic><topic>lower Maestrichtian</topic><topic>lower Paleocene</topic><topic>lower Turonian</topic><topic>Maestrichtian</topic><topic>marine environment</topic><topic>Marl</topic><topic>Mesozoic</topic><topic>metals</topic><topic>Micas</topic><topic>North Atlantic</topic><topic>O-18/O-16</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>oxides</topic><topic>oxygen</topic><topic>Oxygen isotopes</topic><topic>Paleocene</topic><topic>paleoenvironment</topic><topic>Paleogene</topic><topic>Pigmentation</topic><topic>pigments</topic><topic>preservation</topic><topic>red beds</topic><topic>Scanning electron microscopy</topic><topic>Seawater</topic><topic>sed rocks, sediments</topic><topic>Sedimentary petrology</topic><topic>sedimentary rocks</topic><topic>Sedimentation & deposition</topic><topic>sedimentation rates</topic><topic>Sediments</topic><topic>SEM data</topic><topic>solutes</topic><topic>Southern Europe</topic><topic>Spain</topic><topic>stable isotopes</topic><topic>Staining</topic><topic>synsedimentary processes</topic><topic>Tertiary</topic><topic>Turonian</topic><topic>unconsolidated materials</topic><topic>Upper Cretaceous</topic><topic>upper Maestrichtian</topic><topic>Water masses</topic><topic>Water temperature</topic><topic>X-ray diffraction</topic><topic>X-ray diffraction data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elorza, Javier</creatorcontrib><creatorcontrib>Gómez-Alday, Juan José</creatorcontrib><creatorcontrib>Jiménez Berrocoso, Álvaro</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Geological magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elorza, Javier</au><au>Gómez-Alday, Juan José</au><au>Jiménez Berrocoso, Álvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)</atitle><jtitle>Geological magazine</jtitle><addtitle>Geol. Mag</addtitle><date>2021-09</date><risdate>2021</risdate><volume>158</volume><issue>9</issue><spage>1683</spage><epage>1703</epage><pages>1683-1703</pages><issn>0016-7568</issn><eissn>1469-5081</eissn><abstract>Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected. Five types of marl–limestone couplets are identified based on the colour, and a high maximum sedimentation rate (3.6 cm ka–1 ) is noted. The oxidizing activity of deep, cold-water masses is indicated by the oxygen isotope signal in the lower–upper Maastrichtian and Danian sections and the presence of the boreal inoceramid Spyridoceramus tegulatus. In theory, the variation in colour from grey to greenish-yellow, purple and pink up to red tones correlates with the Fe2+/(Fe2++Fe3+) ratio. It is interpreted as the possible palaeoenvironmental transit of particles that sediment out slowly in oxic environments when they circulate through cooler, oxidizing water masses. The colour is considered to be a depositional feature, and hematite, detected by X-ray diffraction, is the main staining agent, without discarding the possible redistribution of previous oxyhydroxides passing to hematite as a final product. The cell filling of the foraminifer shells does not incorporate appreciable amounts of Fe and Mg during diagenesis. Bacterial activity is detected using scanning electron microscopy images, both in the coccolith debris and in the detrital micas, although there is uncertainty as to its importance in the staining process.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0016756821000248</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3735-9407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7568 |
ispartof | Geological magazine, 2021-09, Vol.158 (9), p.1683-1703 |
issn | 0016-7568 1469-5081 |
language | eng |
recordid | cdi_proquest_journals_2559415242 |
source | Cambridge Journals Online |
subjects | aerobic environment Atlantic Ocean Bacteria Basque Provinces Spain Bay of Biscay burial diagenesis C-13/C-12 calcium carbonate Cantabrian Basin Carbon carbonate rocks Cenozoic clastic rocks Coccoliths Cold water masses Color Colour concentration Cretaceous Danian deep-sea environment deposition Diagenesis dissolved oxygen early diagenesis Electron microscopy electron microscopy data Europe ferric iron ferrous iron Geochemistry Geology Haematite Hematite Iberian Peninsula Iron isotope ratios isotopes late diagenesis Limestone lower Maestrichtian lower Paleocene lower Turonian Maestrichtian marine environment Marl Mesozoic metals Micas North Atlantic O-18/O-16 Original Article Oxidation oxides oxygen Oxygen isotopes Paleocene paleoenvironment Paleogene Pigmentation pigments preservation red beds Scanning electron microscopy Seawater sed rocks, sediments Sedimentary petrology sedimentary rocks Sedimentation & deposition sedimentation rates Sediments SEM data solutes Southern Europe Spain stable isotopes Staining synsedimentary processes Tertiary Turonian unconsolidated materials Upper Cretaceous upper Maestrichtian Water masses Water temperature X-ray diffraction X-ray diffraction data |
title | Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syndepositional%20processes%20in%20the%20pigmentation%20of%20oceanic%20red%20beds:%20evidence%20from%20the%20Basque%E2%80%93Cantabrian%20Basin%20(northern%20Spain)&rft.jtitle=Geological%20magazine&rft.au=Elorza,%20Javier&rft.date=2021-09&rft.volume=158&rft.issue=9&rft.spage=1683&rft.epage=1703&rft.pages=1683-1703&rft.issn=0016-7568&rft.eissn=1469-5081&rft_id=info:doi/10.1017/S0016756821000248&rft_dat=%3Cproquest_cross%3E2559415242%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2559415242&rft_id=info:pmid/&rft_cupid=10_1017_S0016756821000248&rfr_iscdi=true |