Loading…

Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)

Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected....

Full description

Saved in:
Bibliographic Details
Published in:Geological magazine 2021-09, Vol.158 (9), p.1683-1703
Main Authors: Elorza, Javier, Gómez-Alday, Juan José, Jiménez Berrocoso, Álvaro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173
cites cdi_FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173
container_end_page 1703
container_issue 9
container_start_page 1683
container_title Geological magazine
container_volume 158
creator Elorza, Javier
Gómez-Alday, Juan José
Jiménez Berrocoso, Álvaro
description Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected. Five types of marl–limestone couplets are identified based on the colour, and a high maximum sedimentation rate (3.6 cm ka–1 ) is noted. The oxidizing activity of deep, cold-water masses is indicated by the oxygen isotope signal in the lower–upper Maastrichtian and Danian sections and the presence of the boreal inoceramid Spyridoceramus tegulatus. In theory, the variation in colour from grey to greenish-yellow, purple and pink up to red tones correlates with the Fe2+/(Fe2++Fe3+) ratio. It is interpreted as the possible palaeoenvironmental transit of particles that sediment out slowly in oxic environments when they circulate through cooler, oxidizing water masses. The colour is considered to be a depositional feature, and hematite, detected by X-ray diffraction, is the main staining agent, without discarding the possible redistribution of previous oxyhydroxides passing to hematite as a final product. The cell filling of the foraminifer shells does not incorporate appreciable amounts of Fe and Mg during diagenesis. Bacterial activity is detected using scanning electron microscopy images, both in the coccolith debris and in the detrital micas, although there is uncertainty as to its importance in the staining process.
doi_str_mv 10.1017/S0016756821000248
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559415242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0016756821000248</cupid><sourcerecordid>2559415242</sourcerecordid><originalsourceid>FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173</originalsourceid><addsrcrecordid>eNp1UE1LJDEQDeKCo-sP8Bbwoki7qSQ96famgx8LgofRc1OTTsbITNImPYon9z_4D_0lm3YEF2QvFaree_VSj5A9YMfAQP2aMgZjVY4rDowxLqsNMgI5rouSVbBJRgNcDPgW2U7pIbeCVdWIvE5ffGu6kFzvgscF7WLQJiWTqPO0vze0c_Ol8T0OOA2WZhi90zSals5Mm06oeXKt8dpQG8PyQ3OG6XFl3v-8TTArZ9GhH2Z544EPMTOip9MOnT_8SX5YXCSz-_nukLuL89vJVXF9c_l7cnpdoIS6L1qFleA1amutKIUEiUparKwCYEIr3tZCcTCc1ULDDARWGpWqc-WyBCV2yP56b74vfy31zUNYxXxwanhZ1hJKLnlmwZqlY0gpGtt00S0xvjTAmiHn5lvOWXO01sxNSNoNQTyHuGj_MWAcGjZm8oMtPh1wmXNp5-aL93-Pv_NCj5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559415242</pqid></control><display><type>article</type><title>Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)</title><source>Cambridge Journals Online</source><creator>Elorza, Javier ; Gómez-Alday, Juan José ; Jiménez Berrocoso, Álvaro</creator><creatorcontrib>Elorza, Javier ; Gómez-Alday, Juan José ; Jiménez Berrocoso, Álvaro</creatorcontrib><description>Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected. Five types of marl–limestone couplets are identified based on the colour, and a high maximum sedimentation rate (3.6 cm ka–1 ) is noted. The oxidizing activity of deep, cold-water masses is indicated by the oxygen isotope signal in the lower–upper Maastrichtian and Danian sections and the presence of the boreal inoceramid Spyridoceramus tegulatus. In theory, the variation in colour from grey to greenish-yellow, purple and pink up to red tones correlates with the Fe2+/(Fe2++Fe3+) ratio. It is interpreted as the possible palaeoenvironmental transit of particles that sediment out slowly in oxic environments when they circulate through cooler, oxidizing water masses. The colour is considered to be a depositional feature, and hematite, detected by X-ray diffraction, is the main staining agent, without discarding the possible redistribution of previous oxyhydroxides passing to hematite as a final product. The cell filling of the foraminifer shells does not incorporate appreciable amounts of Fe and Mg during diagenesis. Bacterial activity is detected using scanning electron microscopy images, both in the coccolith debris and in the detrital micas, although there is uncertainty as to its importance in the staining process.</description><identifier>ISSN: 0016-7568</identifier><identifier>EISSN: 1469-5081</identifier><identifier>DOI: 10.1017/S0016756821000248</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>aerobic environment ; Atlantic Ocean ; Bacteria ; Basque Provinces Spain ; Bay of Biscay ; burial diagenesis ; C-13/C-12 ; calcium carbonate ; Cantabrian Basin ; Carbon ; carbonate rocks ; Cenozoic ; clastic rocks ; Coccoliths ; Cold water masses ; Color ; Colour ; concentration ; Cretaceous ; Danian ; deep-sea environment ; deposition ; Diagenesis ; dissolved oxygen ; early diagenesis ; Electron microscopy ; electron microscopy data ; Europe ; ferric iron ; ferrous iron ; Geochemistry ; Geology ; Haematite ; Hematite ; Iberian Peninsula ; Iron ; isotope ratios ; isotopes ; late diagenesis ; Limestone ; lower Maestrichtian ; lower Paleocene ; lower Turonian ; Maestrichtian ; marine environment ; Marl ; Mesozoic ; metals ; Micas ; North Atlantic ; O-18/O-16 ; Original Article ; Oxidation ; oxides ; oxygen ; Oxygen isotopes ; Paleocene ; paleoenvironment ; Paleogene ; Pigmentation ; pigments ; preservation ; red beds ; Scanning electron microscopy ; Seawater ; sed rocks, sediments ; Sedimentary petrology ; sedimentary rocks ; Sedimentation &amp; deposition ; sedimentation rates ; Sediments ; SEM data ; solutes ; Southern Europe ; Spain ; stable isotopes ; Staining ; synsedimentary processes ; Tertiary ; Turonian ; unconsolidated materials ; Upper Cretaceous ; upper Maestrichtian ; Water masses ; Water temperature ; X-ray diffraction ; X-ray diffraction data</subject><ispartof>Geological magazine, 2021-09, Vol.158 (9), p.1683-1703</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>GeoRef, Copyright 2021, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Pressmust be obtained for commercial re-use. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173</citedby><cites>FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173</cites><orcidid>0000-0003-3735-9407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0016756821000248/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Elorza, Javier</creatorcontrib><creatorcontrib>Gómez-Alday, Juan José</creatorcontrib><creatorcontrib>Jiménez Berrocoso, Álvaro</creatorcontrib><title>Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)</title><title>Geological magazine</title><addtitle>Geol. Mag</addtitle><description>Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected. Five types of marl–limestone couplets are identified based on the colour, and a high maximum sedimentation rate (3.6 cm ka–1 ) is noted. The oxidizing activity of deep, cold-water masses is indicated by the oxygen isotope signal in the lower–upper Maastrichtian and Danian sections and the presence of the boreal inoceramid Spyridoceramus tegulatus. In theory, the variation in colour from grey to greenish-yellow, purple and pink up to red tones correlates with the Fe2+/(Fe2++Fe3+) ratio. It is interpreted as the possible palaeoenvironmental transit of particles that sediment out slowly in oxic environments when they circulate through cooler, oxidizing water masses. The colour is considered to be a depositional feature, and hematite, detected by X-ray diffraction, is the main staining agent, without discarding the possible redistribution of previous oxyhydroxides passing to hematite as a final product. The cell filling of the foraminifer shells does not incorporate appreciable amounts of Fe and Mg during diagenesis. Bacterial activity is detected using scanning electron microscopy images, both in the coccolith debris and in the detrital micas, although there is uncertainty as to its importance in the staining process.</description><subject>aerobic environment</subject><subject>Atlantic Ocean</subject><subject>Bacteria</subject><subject>Basque Provinces Spain</subject><subject>Bay of Biscay</subject><subject>burial diagenesis</subject><subject>C-13/C-12</subject><subject>calcium carbonate</subject><subject>Cantabrian Basin</subject><subject>Carbon</subject><subject>carbonate rocks</subject><subject>Cenozoic</subject><subject>clastic rocks</subject><subject>Coccoliths</subject><subject>Cold water masses</subject><subject>Color</subject><subject>Colour</subject><subject>concentration</subject><subject>Cretaceous</subject><subject>Danian</subject><subject>deep-sea environment</subject><subject>deposition</subject><subject>Diagenesis</subject><subject>dissolved oxygen</subject><subject>early diagenesis</subject><subject>Electron microscopy</subject><subject>electron microscopy data</subject><subject>Europe</subject><subject>ferric iron</subject><subject>ferrous iron</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Haematite</subject><subject>Hematite</subject><subject>Iberian Peninsula</subject><subject>Iron</subject><subject>isotope ratios</subject><subject>isotopes</subject><subject>late diagenesis</subject><subject>Limestone</subject><subject>lower Maestrichtian</subject><subject>lower Paleocene</subject><subject>lower Turonian</subject><subject>Maestrichtian</subject><subject>marine environment</subject><subject>Marl</subject><subject>Mesozoic</subject><subject>metals</subject><subject>Micas</subject><subject>North Atlantic</subject><subject>O-18/O-16</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>oxides</subject><subject>oxygen</subject><subject>Oxygen isotopes</subject><subject>Paleocene</subject><subject>paleoenvironment</subject><subject>Paleogene</subject><subject>Pigmentation</subject><subject>pigments</subject><subject>preservation</subject><subject>red beds</subject><subject>Scanning electron microscopy</subject><subject>Seawater</subject><subject>sed rocks, sediments</subject><subject>Sedimentary petrology</subject><subject>sedimentary rocks</subject><subject>Sedimentation &amp; deposition</subject><subject>sedimentation rates</subject><subject>Sediments</subject><subject>SEM data</subject><subject>solutes</subject><subject>Southern Europe</subject><subject>Spain</subject><subject>stable isotopes</subject><subject>Staining</subject><subject>synsedimentary processes</subject><subject>Tertiary</subject><subject>Turonian</subject><subject>unconsolidated materials</subject><subject>Upper Cretaceous</subject><subject>upper Maestrichtian</subject><subject>Water masses</subject><subject>Water temperature</subject><subject>X-ray diffraction</subject><subject>X-ray diffraction data</subject><issn>0016-7568</issn><issn>1469-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LJDEQDeKCo-sP8Bbwoki7qSQ96famgx8LgofRc1OTTsbITNImPYon9z_4D_0lm3YEF2QvFaree_VSj5A9YMfAQP2aMgZjVY4rDowxLqsNMgI5rouSVbBJRgNcDPgW2U7pIbeCVdWIvE5ffGu6kFzvgscF7WLQJiWTqPO0vze0c_Ol8T0OOA2WZhi90zSals5Mm06oeXKt8dpQG8PyQ3OG6XFl3v-8TTArZ9GhH2Z544EPMTOip9MOnT_8SX5YXCSz-_nukLuL89vJVXF9c_l7cnpdoIS6L1qFleA1amutKIUEiUparKwCYEIr3tZCcTCc1ULDDARWGpWqc-WyBCV2yP56b74vfy31zUNYxXxwanhZ1hJKLnlmwZqlY0gpGtt00S0xvjTAmiHn5lvOWXO01sxNSNoNQTyHuGj_MWAcGjZm8oMtPh1wmXNp5-aL93-Pv_NCj5Y</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Elorza, Javier</creator><creator>Gómez-Alday, Juan José</creator><creator>Jiménez Berrocoso, Álvaro</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0003-3735-9407</orcidid></search><sort><creationdate>202109</creationdate><title>Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)</title><author>Elorza, Javier ; Gómez-Alday, Juan José ; Jiménez Berrocoso, Álvaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aerobic environment</topic><topic>Atlantic Ocean</topic><topic>Bacteria</topic><topic>Basque Provinces Spain</topic><topic>Bay of Biscay</topic><topic>burial diagenesis</topic><topic>C-13/C-12</topic><topic>calcium carbonate</topic><topic>Cantabrian Basin</topic><topic>Carbon</topic><topic>carbonate rocks</topic><topic>Cenozoic</topic><topic>clastic rocks</topic><topic>Coccoliths</topic><topic>Cold water masses</topic><topic>Color</topic><topic>Colour</topic><topic>concentration</topic><topic>Cretaceous</topic><topic>Danian</topic><topic>deep-sea environment</topic><topic>deposition</topic><topic>Diagenesis</topic><topic>dissolved oxygen</topic><topic>early diagenesis</topic><topic>Electron microscopy</topic><topic>electron microscopy data</topic><topic>Europe</topic><topic>ferric iron</topic><topic>ferrous iron</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Haematite</topic><topic>Hematite</topic><topic>Iberian Peninsula</topic><topic>Iron</topic><topic>isotope ratios</topic><topic>isotopes</topic><topic>late diagenesis</topic><topic>Limestone</topic><topic>lower Maestrichtian</topic><topic>lower Paleocene</topic><topic>lower Turonian</topic><topic>Maestrichtian</topic><topic>marine environment</topic><topic>Marl</topic><topic>Mesozoic</topic><topic>metals</topic><topic>Micas</topic><topic>North Atlantic</topic><topic>O-18/O-16</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>oxides</topic><topic>oxygen</topic><topic>Oxygen isotopes</topic><topic>Paleocene</topic><topic>paleoenvironment</topic><topic>Paleogene</topic><topic>Pigmentation</topic><topic>pigments</topic><topic>preservation</topic><topic>red beds</topic><topic>Scanning electron microscopy</topic><topic>Seawater</topic><topic>sed rocks, sediments</topic><topic>Sedimentary petrology</topic><topic>sedimentary rocks</topic><topic>Sedimentation &amp; deposition</topic><topic>sedimentation rates</topic><topic>Sediments</topic><topic>SEM data</topic><topic>solutes</topic><topic>Southern Europe</topic><topic>Spain</topic><topic>stable isotopes</topic><topic>Staining</topic><topic>synsedimentary processes</topic><topic>Tertiary</topic><topic>Turonian</topic><topic>unconsolidated materials</topic><topic>Upper Cretaceous</topic><topic>upper Maestrichtian</topic><topic>Water masses</topic><topic>Water temperature</topic><topic>X-ray diffraction</topic><topic>X-ray diffraction data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elorza, Javier</creatorcontrib><creatorcontrib>Gómez-Alday, Juan José</creatorcontrib><creatorcontrib>Jiménez Berrocoso, Álvaro</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Geological magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elorza, Javier</au><au>Gómez-Alday, Juan José</au><au>Jiménez Berrocoso, Álvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)</atitle><jtitle>Geological magazine</jtitle><addtitle>Geol. Mag</addtitle><date>2021-09</date><risdate>2021</risdate><volume>158</volume><issue>9</issue><spage>1683</spage><epage>1703</epage><pages>1683-1703</pages><issn>0016-7568</issn><eissn>1469-5081</eissn><abstract>Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected. Five types of marl–limestone couplets are identified based on the colour, and a high maximum sedimentation rate (3.6 cm ka–1 ) is noted. The oxidizing activity of deep, cold-water masses is indicated by the oxygen isotope signal in the lower–upper Maastrichtian and Danian sections and the presence of the boreal inoceramid Spyridoceramus tegulatus. In theory, the variation in colour from grey to greenish-yellow, purple and pink up to red tones correlates with the Fe2+/(Fe2++Fe3+) ratio. It is interpreted as the possible palaeoenvironmental transit of particles that sediment out slowly in oxic environments when they circulate through cooler, oxidizing water masses. The colour is considered to be a depositional feature, and hematite, detected by X-ray diffraction, is the main staining agent, without discarding the possible redistribution of previous oxyhydroxides passing to hematite as a final product. The cell filling of the foraminifer shells does not incorporate appreciable amounts of Fe and Mg during diagenesis. Bacterial activity is detected using scanning electron microscopy images, both in the coccolith debris and in the detrital micas, although there is uncertainty as to its importance in the staining process.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0016756821000248</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3735-9407</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7568
ispartof Geological magazine, 2021-09, Vol.158 (9), p.1683-1703
issn 0016-7568
1469-5081
language eng
recordid cdi_proquest_journals_2559415242
source Cambridge Journals Online
subjects aerobic environment
Atlantic Ocean
Bacteria
Basque Provinces Spain
Bay of Biscay
burial diagenesis
C-13/C-12
calcium carbonate
Cantabrian Basin
Carbon
carbonate rocks
Cenozoic
clastic rocks
Coccoliths
Cold water masses
Color
Colour
concentration
Cretaceous
Danian
deep-sea environment
deposition
Diagenesis
dissolved oxygen
early diagenesis
Electron microscopy
electron microscopy data
Europe
ferric iron
ferrous iron
Geochemistry
Geology
Haematite
Hematite
Iberian Peninsula
Iron
isotope ratios
isotopes
late diagenesis
Limestone
lower Maestrichtian
lower Paleocene
lower Turonian
Maestrichtian
marine environment
Marl
Mesozoic
metals
Micas
North Atlantic
O-18/O-16
Original Article
Oxidation
oxides
oxygen
Oxygen isotopes
Paleocene
paleoenvironment
Paleogene
Pigmentation
pigments
preservation
red beds
Scanning electron microscopy
Seawater
sed rocks, sediments
Sedimentary petrology
sedimentary rocks
Sedimentation & deposition
sedimentation rates
Sediments
SEM data
solutes
Southern Europe
Spain
stable isotopes
Staining
synsedimentary processes
Tertiary
Turonian
unconsolidated materials
Upper Cretaceous
upper Maestrichtian
Water masses
Water temperature
X-ray diffraction
X-ray diffraction data
title Syndepositional processes in the pigmentation of oceanic red beds: evidence from the Basque–Cantabrian Basin (northern Spain)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syndepositional%20processes%20in%20the%20pigmentation%20of%20oceanic%20red%20beds:%20evidence%20from%20the%20Basque%E2%80%93Cantabrian%20Basin%20(northern%20Spain)&rft.jtitle=Geological%20magazine&rft.au=Elorza,%20Javier&rft.date=2021-09&rft.volume=158&rft.issue=9&rft.spage=1683&rft.epage=1703&rft.pages=1683-1703&rft.issn=0016-7568&rft.eissn=1469-5081&rft_id=info:doi/10.1017/S0016756821000248&rft_dat=%3Cproquest_cross%3E2559415242%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a419t-d7a8329acfff353414a74fa8f71103c72d93721e2093c1b13a8ca7798ca245173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2559415242&rft_id=info:pmid/&rft_cupid=10_1017_S0016756821000248&rfr_iscdi=true