Loading…
End extending models of set theory via power admissible covers
Motivated by problems involving end extensions of models of set theory, we develop the rudiments of the power admissible cover construction (over ill-founded models of set theory), an extension of the machinery of admissible covers invented by Barwise as a versatile tool for generalizing model-theor...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | McKenzie, Zachiri Enayat, Ali |
description | Motivated by problems involving end extensions of models of set theory, we develop the rudiments of the power admissible cover construction (over ill-founded models of set theory), an extension of the machinery of admissible covers invented by Barwise as a versatile tool for generalizing model-theoretic results about countable well-founded models of set theory to countable ill-founded ones. Our development of the power admissible machinery allows us to obtain new results concerning powerset-preserving end extensions and rank extensions of countable models of subsystems of \(\mathsf{ZFC}\). The canonical extension \(\mathsf{KP}^\mathcal{P}\) of Kripke-Platek set theory \(\mathsf{KP}\) plays a key role in our work; one of our results refines a theorem of Rathjen by showing that \(\Sigma_1^\mathcal{P}\text{-}\mathsf{Foundation}\) is provable in \(\mathsf{KP}^\mathcal{P}\) (without invoking the axiom of choice). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2559468520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559468520</sourcerecordid><originalsourceid>FETCH-proquest_journals_25594685203</originalsourceid><addsrcrecordid>eNqNjUEOgjAQABsTE4nyh008k9QWEC9eDMYHeDdoFy2BLnYL6u_l4AM8zWEmmZmIlNabpEiVWoiYuZFSqnyrskxHYl86A_gO6Ix1d-jIYMtANTAGCA8k_4HRVtDTCz1UprPM9toi3GhEzysxr6uWMf5xKdbH8nw4Jb2n54AcLg0N3k3qMv12aV5kSur_qi_BPDh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559468520</pqid></control><display><type>article</type><title>End extending models of set theory via power admissible covers</title><source>Publicly Available Content Database</source><creator>McKenzie, Zachiri ; Enayat, Ali</creator><creatorcontrib>McKenzie, Zachiri ; Enayat, Ali</creatorcontrib><description>Motivated by problems involving end extensions of models of set theory, we develop the rudiments of the power admissible cover construction (over ill-founded models of set theory), an extension of the machinery of admissible covers invented by Barwise as a versatile tool for generalizing model-theoretic results about countable well-founded models of set theory to countable ill-founded ones. Our development of the power admissible machinery allows us to obtain new results concerning powerset-preserving end extensions and rank extensions of countable models of subsystems of \(\mathsf{ZFC}\). The canonical extension \(\mathsf{KP}^\mathcal{P}\) of Kripke-Platek set theory \(\mathsf{KP}\) plays a key role in our work; one of our results refines a theorem of Rathjen by showing that \(\Sigma_1^\mathcal{P}\text{-}\mathsf{Foundation}\) is provable in \(\mathsf{KP}^\mathcal{P}\) (without invoking the axiom of choice).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Set theory ; Subsystems</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2559468520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>McKenzie, Zachiri</creatorcontrib><creatorcontrib>Enayat, Ali</creatorcontrib><title>End extending models of set theory via power admissible covers</title><title>arXiv.org</title><description>Motivated by problems involving end extensions of models of set theory, we develop the rudiments of the power admissible cover construction (over ill-founded models of set theory), an extension of the machinery of admissible covers invented by Barwise as a versatile tool for generalizing model-theoretic results about countable well-founded models of set theory to countable ill-founded ones. Our development of the power admissible machinery allows us to obtain new results concerning powerset-preserving end extensions and rank extensions of countable models of subsystems of \(\mathsf{ZFC}\). The canonical extension \(\mathsf{KP}^\mathcal{P}\) of Kripke-Platek set theory \(\mathsf{KP}\) plays a key role in our work; one of our results refines a theorem of Rathjen by showing that \(\Sigma_1^\mathcal{P}\text{-}\mathsf{Foundation}\) is provable in \(\mathsf{KP}^\mathcal{P}\) (without invoking the axiom of choice).</description><subject>Set theory</subject><subject>Subsystems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUEOgjAQABsTE4nyh008k9QWEC9eDMYHeDdoFy2BLnYL6u_l4AM8zWEmmZmIlNabpEiVWoiYuZFSqnyrskxHYl86A_gO6Ix1d-jIYMtANTAGCA8k_4HRVtDTCz1UprPM9toi3GhEzysxr6uWMf5xKdbH8nw4Jb2n54AcLg0N3k3qMv12aV5kSur_qi_BPDh4</recordid><startdate>20220324</startdate><enddate>20220324</enddate><creator>McKenzie, Zachiri</creator><creator>Enayat, Ali</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220324</creationdate><title>End extending models of set theory via power admissible covers</title><author>McKenzie, Zachiri ; Enayat, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25594685203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Set theory</topic><topic>Subsystems</topic><toplevel>online_resources</toplevel><creatorcontrib>McKenzie, Zachiri</creatorcontrib><creatorcontrib>Enayat, Ali</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKenzie, Zachiri</au><au>Enayat, Ali</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>End extending models of set theory via power admissible covers</atitle><jtitle>arXiv.org</jtitle><date>2022-03-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Motivated by problems involving end extensions of models of set theory, we develop the rudiments of the power admissible cover construction (over ill-founded models of set theory), an extension of the machinery of admissible covers invented by Barwise as a versatile tool for generalizing model-theoretic results about countable well-founded models of set theory to countable ill-founded ones. Our development of the power admissible machinery allows us to obtain new results concerning powerset-preserving end extensions and rank extensions of countable models of subsystems of \(\mathsf{ZFC}\). The canonical extension \(\mathsf{KP}^\mathcal{P}\) of Kripke-Platek set theory \(\mathsf{KP}\) plays a key role in our work; one of our results refines a theorem of Rathjen by showing that \(\Sigma_1^\mathcal{P}\text{-}\mathsf{Foundation}\) is provable in \(\mathsf{KP}^\mathcal{P}\) (without invoking the axiom of choice).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2559468520 |
source | Publicly Available Content Database |
subjects | Set theory Subsystems |
title | End extending models of set theory via power admissible covers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=End%20extending%20models%20of%20set%20theory%20via%20power%20admissible%20covers&rft.jtitle=arXiv.org&rft.au=McKenzie,%20Zachiri&rft.date=2022-03-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2559468520%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25594685203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2559468520&rft_id=info:pmid/&rfr_iscdi=true |