Loading…

Thermal and structural response of aerospike mounted on blunt-nose body

The inclusion of aerospike on blunt nose body of hypersonic vehicle has been considered to be the simplest and most efficient technique for a concurrent reduction of both aeroheating and wave drag due to hypersonic speed. However, the thermal and mechanical behavior of aerospike structure under the...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2021-09, Vol.235 (11), p.1441-1456
Main Authors: ZhunHyok, Zhang, CholJin, Won, CholUk, Ri, CholJin, Kim, RyongSop, Kim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The inclusion of aerospike on blunt nose body of hypersonic vehicle has been considered to be the simplest and most efficient technique for a concurrent reduction of both aeroheating and wave drag due to hypersonic speed. However, the thermal and mechanical behavior of aerospike structure under the coupling effect of aerodynamic force and aeroheating remains unclear. In this study, the thermal and structural response of aerospike mounted on the blunt nose body of hypersonic vehicle was numerically simulated by applying 3 D fluid-thermal-structural coupling method based on loosely-coupled strategy. In the simulation, the angle-of-attack and the spike’s length and diameter are differently set as α = 0°–10°, L/D = 1–2 and d/D = 0.05–0.15, respectively. Through the parametric study, the following results were obtained. Firstly, the increase of vehicle’s angle-of-attack and spike’s length unfavorably affect the thermal and structural response of aerospike. Secondly, the increase of spike’s diameter can improve its structural response characteristic. Finally, the aerospike with the angle-of-attack of 0° and the length and diameter of L/D = 1 and d/D = 0.15, respectively, is preferred in consideration of the effect of flight angle-of-attack and spike’s geometrical structure on the thermal and structural response of spike and the drag reduction of vehicle. The numerical calculation results provide a technical support for the safe design of aerospike.
ISSN:0954-4100
2041-3025
DOI:10.1177/0954410020976488