Loading…

Water and Sediment Output Evaluation Using Cellular Automata on Alpine Catchment: Soana, Italy - Test Case

In the alpine contest, the estimation of the rainfall (inflow) and the discharge (outflow) data are very important in order to, at least, analyse historical time series at catchment scale; determine the hydrological maximum and minimum estimate flood and drought frequency. Hydrological researches be...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Earth and environmental science 2017-12, Vol.95 (2), p.22031
Main Authors: Pasculli, Antonio, Audisio, Chiara, Sciarra, Nicola
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the alpine contest, the estimation of the rainfall (inflow) and the discharge (outflow) data are very important in order to, at least, analyse historical time series at catchment scale; determine the hydrological maximum and minimum estimate flood and drought frequency. Hydrological researches become a precious source of information for various human activities, in particular for land use management and planning. Many rainfall- runoff models have been proposed to reflect steady, gradually-varied flow condition inside a catchment. In these last years, the application of Reduced Complexity Models (RCM) has been representing an excellent alternative resource for evaluating the hydrological response of catchments, within a period of time up to decades. Hence, this paper is aimed at the discussion of the application of the research code CAESAR, based on cellular automaton (CA) approach, in order to evaluate the water and the sediment outputs from an alpine catchment (Soana, Italy), selected as test case. The comparison between the predicted numerical results, developed through parametric analysis, and the available measured data are discussed. Finally, the analysis of a numerical estimate of the sediment budget over ten years is presented. The necessity of a fast, but reliable numerical support when the measured data are not so easily accessible, as in Alpine catchments, is highlighted.
ISSN:1755-1307
1755-1315
DOI:10.1088/1755-1315/95/2/022031