Loading…

Natural Language Processing with Commonsense Knowledge: A Survey

Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Xie, Yubo, Liu, Zonghui, Ma, Zongyang, Meng, Fanyuan, Xiao, Yan, Miao, Fahui, Pu, Pearl
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xie, Yubo
Liu, Zonghui
Ma, Zongyang
Meng, Fanyuan
Xiao, Yan
Miao, Fahui
Pu, Pearl
description Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of commonsense knowledge into various NLP tasks. We begin by reviewing prominent commonsense knowledge bases and then discuss the benchmarks used to evaluate the commonsense reasoning capabilities of NLP models, particularly language models. Furthermore, we highlight key methodologies for incorporating commonsense knowledge and their applications across different NLP tasks. The paper also examines the challenges and emerging trends in enhancing NLP systems with commonsense reasoning. All literature referenced in this survey can be accessed via our GitHub repository: https://github.com/yuboxie/awesome-commonsense.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2560161700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560161700</sourcerecordid><originalsourceid>FETCH-proquest_journals_25601617003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8EssKS1KzFHwScxLL01MT1UIKMpPTi0uzsxLVyjPLMlQcM7Pzc3PK04FIgXvvPzynNSU9FQrBUeF4NKistRKHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzI1MzA0MzQ3MDAmThUANYc44Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560161700</pqid></control><display><type>article</type><title>Natural Language Processing with Commonsense Knowledge: A Survey</title><source>Publicly Available Content (ProQuest)</source><creator>Xie, Yubo ; Liu, Zonghui ; Ma, Zongyang ; Meng, Fanyuan ; Xiao, Yan ; Miao, Fahui ; Pu, Pearl</creator><creatorcontrib>Xie, Yubo ; Liu, Zonghui ; Ma, Zongyang ; Meng, Fanyuan ; Xiao, Yan ; Miao, Fahui ; Pu, Pearl</creatorcontrib><description>Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of commonsense knowledge into various NLP tasks. We begin by reviewing prominent commonsense knowledge bases and then discuss the benchmarks used to evaluate the commonsense reasoning capabilities of NLP models, particularly language models. Furthermore, we highlight key methodologies for incorporating commonsense knowledge and their applications across different NLP tasks. The paper also examines the challenges and emerging trends in enhancing NLP systems with commonsense reasoning. All literature referenced in this survey can be accessed via our GitHub repository: https://github.com/yuboxie/awesome-commonsense.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Knowledge bases (artificial intelligence) ; Natural language processing ; Reasoning</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2560161700?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xie, Yubo</creatorcontrib><creatorcontrib>Liu, Zonghui</creatorcontrib><creatorcontrib>Ma, Zongyang</creatorcontrib><creatorcontrib>Meng, Fanyuan</creatorcontrib><creatorcontrib>Xiao, Yan</creatorcontrib><creatorcontrib>Miao, Fahui</creatorcontrib><creatorcontrib>Pu, Pearl</creatorcontrib><title>Natural Language Processing with Commonsense Knowledge: A Survey</title><title>arXiv.org</title><description>Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of commonsense knowledge into various NLP tasks. We begin by reviewing prominent commonsense knowledge bases and then discuss the benchmarks used to evaluate the commonsense reasoning capabilities of NLP models, particularly language models. Furthermore, we highlight key methodologies for incorporating commonsense knowledge and their applications across different NLP tasks. The paper also examines the challenges and emerging trends in enhancing NLP systems with commonsense reasoning. All literature referenced in this survey can be accessed via our GitHub repository: https://github.com/yuboxie/awesome-commonsense.</description><subject>Knowledge bases (artificial intelligence)</subject><subject>Natural language processing</subject><subject>Reasoning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8EssKS1KzFHwScxLL01MT1UIKMpPTi0uzsxLVyjPLMlQcM7Pzc3PK04FIgXvvPzynNSU9FQrBUeF4NKistRKHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzI1MzA0MzQ3MDAmThUANYc44Q</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Xie, Yubo</creator><creator>Liu, Zonghui</creator><creator>Ma, Zongyang</creator><creator>Meng, Fanyuan</creator><creator>Xiao, Yan</creator><creator>Miao, Fahui</creator><creator>Pu, Pearl</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240913</creationdate><title>Natural Language Processing with Commonsense Knowledge: A Survey</title><author>Xie, Yubo ; Liu, Zonghui ; Ma, Zongyang ; Meng, Fanyuan ; Xiao, Yan ; Miao, Fahui ; Pu, Pearl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25601617003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Knowledge bases (artificial intelligence)</topic><topic>Natural language processing</topic><topic>Reasoning</topic><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yubo</creatorcontrib><creatorcontrib>Liu, Zonghui</creatorcontrib><creatorcontrib>Ma, Zongyang</creatorcontrib><creatorcontrib>Meng, Fanyuan</creatorcontrib><creatorcontrib>Xiao, Yan</creatorcontrib><creatorcontrib>Miao, Fahui</creatorcontrib><creatorcontrib>Pu, Pearl</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yubo</au><au>Liu, Zonghui</au><au>Ma, Zongyang</au><au>Meng, Fanyuan</au><au>Xiao, Yan</au><au>Miao, Fahui</au><au>Pu, Pearl</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Natural Language Processing with Commonsense Knowledge: A Survey</atitle><jtitle>arXiv.org</jtitle><date>2024-09-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of commonsense knowledge into various NLP tasks. We begin by reviewing prominent commonsense knowledge bases and then discuss the benchmarks used to evaluate the commonsense reasoning capabilities of NLP models, particularly language models. Furthermore, we highlight key methodologies for incorporating commonsense knowledge and their applications across different NLP tasks. The paper also examines the challenges and emerging trends in enhancing NLP systems with commonsense reasoning. All literature referenced in this survey can be accessed via our GitHub repository: https://github.com/yuboxie/awesome-commonsense.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2560161700
source Publicly Available Content (ProQuest)
subjects Knowledge bases (artificial intelligence)
Natural language processing
Reasoning
title Natural Language Processing with Commonsense Knowledge: A Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Natural%20Language%20Processing%20with%20Commonsense%20Knowledge:%20A%20Survey&rft.jtitle=arXiv.org&rft.au=Xie,%20Yubo&rft.date=2024-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2560161700%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25601617003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560161700&rft_id=info:pmid/&rfr_iscdi=true