Loading…
Natural Language Processing with Commonsense Knowledge: A Survey
Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xie, Yubo Liu, Zonghui Ma, Zongyang Meng, Fanyuan Xiao, Yan Miao, Fahui Pu, Pearl |
description | Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of commonsense knowledge into various NLP tasks. We begin by reviewing prominent commonsense knowledge bases and then discuss the benchmarks used to evaluate the commonsense reasoning capabilities of NLP models, particularly language models. Furthermore, we highlight key methodologies for incorporating commonsense knowledge and their applications across different NLP tasks. The paper also examines the challenges and emerging trends in enhancing NLP systems with commonsense reasoning. All literature referenced in this survey can be accessed via our GitHub repository: https://github.com/yuboxie/awesome-commonsense. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2560161700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560161700</sourcerecordid><originalsourceid>FETCH-proquest_journals_25601617003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8EssKS1KzFHwScxLL01MT1UIKMpPTi0uzsxLVyjPLMlQcM7Pzc3PK04FIgXvvPzynNSU9FQrBUeF4NKistRKHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzI1MzA0MzQ3MDAmThUANYc44Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560161700</pqid></control><display><type>article</type><title>Natural Language Processing with Commonsense Knowledge: A Survey</title><source>Publicly Available Content (ProQuest)</source><creator>Xie, Yubo ; Liu, Zonghui ; Ma, Zongyang ; Meng, Fanyuan ; Xiao, Yan ; Miao, Fahui ; Pu, Pearl</creator><creatorcontrib>Xie, Yubo ; Liu, Zonghui ; Ma, Zongyang ; Meng, Fanyuan ; Xiao, Yan ; Miao, Fahui ; Pu, Pearl</creatorcontrib><description>Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of commonsense knowledge into various NLP tasks. We begin by reviewing prominent commonsense knowledge bases and then discuss the benchmarks used to evaluate the commonsense reasoning capabilities of NLP models, particularly language models. Furthermore, we highlight key methodologies for incorporating commonsense knowledge and their applications across different NLP tasks. The paper also examines the challenges and emerging trends in enhancing NLP systems with commonsense reasoning. All literature referenced in this survey can be accessed via our GitHub repository: https://github.com/yuboxie/awesome-commonsense.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Knowledge bases (artificial intelligence) ; Natural language processing ; Reasoning</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2560161700?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xie, Yubo</creatorcontrib><creatorcontrib>Liu, Zonghui</creatorcontrib><creatorcontrib>Ma, Zongyang</creatorcontrib><creatorcontrib>Meng, Fanyuan</creatorcontrib><creatorcontrib>Xiao, Yan</creatorcontrib><creatorcontrib>Miao, Fahui</creatorcontrib><creatorcontrib>Pu, Pearl</creatorcontrib><title>Natural Language Processing with Commonsense Knowledge: A Survey</title><title>arXiv.org</title><description>Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of commonsense knowledge into various NLP tasks. We begin by reviewing prominent commonsense knowledge bases and then discuss the benchmarks used to evaluate the commonsense reasoning capabilities of NLP models, particularly language models. Furthermore, we highlight key methodologies for incorporating commonsense knowledge and their applications across different NLP tasks. The paper also examines the challenges and emerging trends in enhancing NLP systems with commonsense reasoning. All literature referenced in this survey can be accessed via our GitHub repository: https://github.com/yuboxie/awesome-commonsense.</description><subject>Knowledge bases (artificial intelligence)</subject><subject>Natural language processing</subject><subject>Reasoning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8EssKS1KzFHwScxLL01MT1UIKMpPTi0uzsxLVyjPLMlQcM7Pzc3PK04FIgXvvPzynNSU9FQrBUeF4NKistRKHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzI1MzA0MzQ3MDAmThUANYc44Q</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Xie, Yubo</creator><creator>Liu, Zonghui</creator><creator>Ma, Zongyang</creator><creator>Meng, Fanyuan</creator><creator>Xiao, Yan</creator><creator>Miao, Fahui</creator><creator>Pu, Pearl</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240913</creationdate><title>Natural Language Processing with Commonsense Knowledge: A Survey</title><author>Xie, Yubo ; Liu, Zonghui ; Ma, Zongyang ; Meng, Fanyuan ; Xiao, Yan ; Miao, Fahui ; Pu, Pearl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25601617003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Knowledge bases (artificial intelligence)</topic><topic>Natural language processing</topic><topic>Reasoning</topic><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yubo</creatorcontrib><creatorcontrib>Liu, Zonghui</creatorcontrib><creatorcontrib>Ma, Zongyang</creatorcontrib><creatorcontrib>Meng, Fanyuan</creatorcontrib><creatorcontrib>Xiao, Yan</creatorcontrib><creatorcontrib>Miao, Fahui</creatorcontrib><creatorcontrib>Pu, Pearl</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yubo</au><au>Liu, Zonghui</au><au>Ma, Zongyang</au><au>Meng, Fanyuan</au><au>Xiao, Yan</au><au>Miao, Fahui</au><au>Pu, Pearl</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Natural Language Processing with Commonsense Knowledge: A Survey</atitle><jtitle>arXiv.org</jtitle><date>2024-09-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Commonsense knowledge is essential for advancing natural language processing (NLP) by enabling models to engage in human-like reasoning, which requires a deeper understanding of context and often involves making inferences based on implicit external knowledge. This paper explores the integration of commonsense knowledge into various NLP tasks. We begin by reviewing prominent commonsense knowledge bases and then discuss the benchmarks used to evaluate the commonsense reasoning capabilities of NLP models, particularly language models. Furthermore, we highlight key methodologies for incorporating commonsense knowledge and their applications across different NLP tasks. The paper also examines the challenges and emerging trends in enhancing NLP systems with commonsense reasoning. All literature referenced in this survey can be accessed via our GitHub repository: https://github.com/yuboxie/awesome-commonsense.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2560161700 |
source | Publicly Available Content (ProQuest) |
subjects | Knowledge bases (artificial intelligence) Natural language processing Reasoning |
title | Natural Language Processing with Commonsense Knowledge: A Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Natural%20Language%20Processing%20with%20Commonsense%20Knowledge:%20A%20Survey&rft.jtitle=arXiv.org&rft.au=Xie,%20Yubo&rft.date=2024-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2560161700%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25601617003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560161700&rft_id=info:pmid/&rfr_iscdi=true |