Loading…
Acoustically Manipulating Internal Structure of Disk-in-Sphere Endoskeletal Droplets
Manipulation of micro/nano particles has been well studied and demonstrated by optical, electromagnetic, and acoustic approaches, or their combinations. Manipulation of internal structure of droplet/particle is rarely explored and remains challenging due to its complicated nature. Here we demonstrat...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Manipulation of micro/nano particles has been well studied and demonstrated by optical, electromagnetic, and acoustic approaches, or their combinations. Manipulation of internal structure of droplet/particle is rarely explored and remains challenging due to its complicated nature. Here we demonstrated the manipulation of internal structure of disk-in-sphere endoskeletal droplets using acoustic wave for the first time. We developed a model to investigate the physical mechanisms behind this novel phenomenon. Theoretical analysis of the acoustic interactions indicated that these assembly dynamics arise from a balance of the primary and secondary radiation forces. Additionally, the disk orientation was found to change with acoustic driving frequency, which allowed on-demand, reversible adjusting disk orientations with respect to the substrate. This novel dynamic behavior leads to unique reversible arrangements of the endoskeletal droplets and their internal architecture, which may provide a new avenue for directed assembly of novel hierarchical colloidal architectures and intracellular organelles or intra-organoid structures. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2108.04779 |