Loading…
A 10-bit 200 MS/s pipelined ADC with parallel sampling and switched op-amp sharing technique
Purpose In parallel sampling method, the size of the sampling capacitor is reduced to improve the bandwidth of the ADC. Design/methodology/approach Various low-power techniques for 10-bit 200MS/s pipelined analog-to-digital converter (ADC) are presented. This work comprises two techniques including...
Saved in:
Published in: | Circuit world 2021-08, Vol.47 (3), p.274-283 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
In parallel sampling method, the size of the sampling capacitor is reduced to improve the bandwidth of the ADC.
Design/methodology/approach
Various low-power techniques for 10-bit 200MS/s pipelined analog-to-digital converter (ADC) are presented. This work comprises two techniques including parallel sampling and switched op-amp sharing technique.
Findings
This paper aims to study the effect of parallel sampling and switched op-amp sharing techniques on power consumption in pipelined ADC. In switched op-amp sharing technique, the numbers of op-amps used in the stages are reduced. Because of the reduction in the size of capacitors in parallel sampling technique and op-amps in the switched op-amp sharing technique, the power consumption of the proposed pipelined ADC is reduced to a greater extent.
Originality/value
Simulated the 10-bit 200MS/s pipelined ADC with complementary metal oxide semiconductor process and the simulation results shows a maximum differential non-linearity of +0.31/−0.31 LSB and the maximum integral non-linearity (of +0.74/−0.74 LSB with 62.9 dB SFDR, 55.90 dB SNDR and ENOB of 8.99 bits, respectively, for 18mW power consumption with the supply voltage of 1.8 V. |
---|---|
ISSN: | 0305-6120 1758-602X |
DOI: | 10.1108/CW-12-2020-0356 |