Loading…

Large-Time Behavior for a Fully Nonlocal Heat Equation

We study the large-time behavior in all L p norms and in different space-time scales of solutions to a nonlocal heat equation in ℝ N involving a Caputo α -time derivative and a power of the Laplacian (−Δ) s , s ∈ (0,1), extending recent results by the authors for the case s = 1. The initial data are...

Full description

Saved in:
Bibliographic Details
Published in:Vietnam journal of mathematics 2021-09, Vol.49 (3), p.831-844
Main Authors: Cortázar, Carmen, Quirós, Fernando, Wolanski, Noemí
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-4c185c53fa7e724a9bf366561ce7f0d006e4c4c7132487fc3fe1b7f2821a1eec3
cites cdi_FETCH-LOGICAL-c319t-4c185c53fa7e724a9bf366561ce7f0d006e4c4c7132487fc3fe1b7f2821a1eec3
container_end_page 844
container_issue 3
container_start_page 831
container_title Vietnam journal of mathematics
container_volume 49
creator Cortázar, Carmen
Quirós, Fernando
Wolanski, Noemí
description We study the large-time behavior in all L p norms and in different space-time scales of solutions to a nonlocal heat equation in ℝ N involving a Caputo α -time derivative and a power of the Laplacian (−Δ) s , s ∈ (0,1), extending recent results by the authors for the case s = 1. The initial data are assumed to be integrable, and, when required, to be also in L p . The main novelty with respect to the case s = 1 comes from the behaviour in fast scales, for which, thanks to the fat tails of the fundamental solution of the equation, we are able to give results that are not available neither for the case s = 1 nor, to our knowledge, for the standard heat equation, s = 1, α = 1.
doi_str_mv 10.1007/s10013-020-00452-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560320738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560320738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c185c53fa7e724a9bf366561ce7f0d006e4c4c7132487fc3fe1b7f2821a1eec3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTaM7cROl1D1gVTBpkjsLNeMS6o0bu2Eqn-PIQh2LOaxuPfO6BByzeCWAai7mDoTFDhQgLzg9HBCBlxAQTnn5envzl7PyUWMGwCQpVQDIhcmrJEuqy1mD_huPiofMpfKZNOuro_Zk29qb02dzdG02WTfmbbyzSU5c6aOePUzh-RlOlmO53TxPHsc3y-oFWzU0tyysrCFcEah4rkZrZyQspDMonLwlp7A3OZWMcHzUjkrHLKVcrzkzDBEK4bkps_dBb_vMLZ647vQpJOaFxIEByXKpOK9ygYfY0Cnd6HamnDUDPQXH93z0YmP_uajD8kkelNM4maN4S_6H9cnLENnAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560320738</pqid></control><display><type>article</type><title>Large-Time Behavior for a Fully Nonlocal Heat Equation</title><source>Springer Nature</source><creator>Cortázar, Carmen ; Quirós, Fernando ; Wolanski, Noemí</creator><creatorcontrib>Cortázar, Carmen ; Quirós, Fernando ; Wolanski, Noemí</creatorcontrib><description>We study the large-time behavior in all L p norms and in different space-time scales of solutions to a nonlocal heat equation in ℝ N involving a Caputo α -time derivative and a power of the Laplacian (−Δ) s , s ∈ (0,1), extending recent results by the authors for the case s = 1. The initial data are assumed to be integrable, and, when required, to be also in L p . The main novelty with respect to the case s = 1 comes from the behaviour in fast scales, for which, thanks to the fat tails of the fundamental solution of the equation, we are able to give results that are not available neither for the case s = 1 nor, to our knowledge, for the standard heat equation, s = 1, α = 1.</description><identifier>ISSN: 2305-221X</identifier><identifier>EISSN: 2305-2228</identifier><identifier>DOI: 10.1007/s10013-020-00452-w</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Mathematics ; Mathematics and Statistics ; Norms ; Original Article ; Thermodynamics</subject><ispartof>Vietnam journal of mathematics, 2021-09, Vol.49 (3), p.831-844</ispartof><rights>Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2020</rights><rights>Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4c185c53fa7e724a9bf366561ce7f0d006e4c4c7132487fc3fe1b7f2821a1eec3</citedby><cites>FETCH-LOGICAL-c319t-4c185c53fa7e724a9bf366561ce7f0d006e4c4c7132487fc3fe1b7f2821a1eec3</cites><orcidid>0000-0001-5401-0640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cortázar, Carmen</creatorcontrib><creatorcontrib>Quirós, Fernando</creatorcontrib><creatorcontrib>Wolanski, Noemí</creatorcontrib><title>Large-Time Behavior for a Fully Nonlocal Heat Equation</title><title>Vietnam journal of mathematics</title><addtitle>Vietnam J. Math</addtitle><description>We study the large-time behavior in all L p norms and in different space-time scales of solutions to a nonlocal heat equation in ℝ N involving a Caputo α -time derivative and a power of the Laplacian (−Δ) s , s ∈ (0,1), extending recent results by the authors for the case s = 1. The initial data are assumed to be integrable, and, when required, to be also in L p . The main novelty with respect to the case s = 1 comes from the behaviour in fast scales, for which, thanks to the fat tails of the fundamental solution of the equation, we are able to give results that are not available neither for the case s = 1 nor, to our knowledge, for the standard heat equation, s = 1, α = 1.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Original Article</subject><subject>Thermodynamics</subject><issn>2305-221X</issn><issn>2305-2228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTaM7cROl1D1gVTBpkjsLNeMS6o0bu2Eqn-PIQh2LOaxuPfO6BByzeCWAai7mDoTFDhQgLzg9HBCBlxAQTnn5envzl7PyUWMGwCQpVQDIhcmrJEuqy1mD_huPiofMpfKZNOuro_Zk29qb02dzdG02WTfmbbyzSU5c6aOePUzh-RlOlmO53TxPHsc3y-oFWzU0tyysrCFcEah4rkZrZyQspDMonLwlp7A3OZWMcHzUjkrHLKVcrzkzDBEK4bkps_dBb_vMLZ647vQpJOaFxIEByXKpOK9ygYfY0Cnd6HamnDUDPQXH93z0YmP_uajD8kkelNM4maN4S_6H9cnLENnAQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Cortázar, Carmen</creator><creator>Quirós, Fernando</creator><creator>Wolanski, Noemí</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5401-0640</orcidid></search><sort><creationdate>20210901</creationdate><title>Large-Time Behavior for a Fully Nonlocal Heat Equation</title><author>Cortázar, Carmen ; Quirós, Fernando ; Wolanski, Noemí</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c185c53fa7e724a9bf366561ce7f0d006e4c4c7132487fc3fe1b7f2821a1eec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Original Article</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortázar, Carmen</creatorcontrib><creatorcontrib>Quirós, Fernando</creatorcontrib><creatorcontrib>Wolanski, Noemí</creatorcontrib><collection>CrossRef</collection><jtitle>Vietnam journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortázar, Carmen</au><au>Quirós, Fernando</au><au>Wolanski, Noemí</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Time Behavior for a Fully Nonlocal Heat Equation</atitle><jtitle>Vietnam journal of mathematics</jtitle><stitle>Vietnam J. Math</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>49</volume><issue>3</issue><spage>831</spage><epage>844</epage><pages>831-844</pages><issn>2305-221X</issn><eissn>2305-2228</eissn><abstract>We study the large-time behavior in all L p norms and in different space-time scales of solutions to a nonlocal heat equation in ℝ N involving a Caputo α -time derivative and a power of the Laplacian (−Δ) s , s ∈ (0,1), extending recent results by the authors for the case s = 1. The initial data are assumed to be integrable, and, when required, to be also in L p . The main novelty with respect to the case s = 1 comes from the behaviour in fast scales, for which, thanks to the fat tails of the fundamental solution of the equation, we are able to give results that are not available neither for the case s = 1 nor, to our knowledge, for the standard heat equation, s = 1, α = 1.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s10013-020-00452-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5401-0640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2305-221X
ispartof Vietnam journal of mathematics, 2021-09, Vol.49 (3), p.831-844
issn 2305-221X
2305-2228
language eng
recordid cdi_proquest_journals_2560320738
source Springer Nature
subjects Mathematics
Mathematics and Statistics
Norms
Original Article
Thermodynamics
title Large-Time Behavior for a Fully Nonlocal Heat Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Time%20Behavior%20for%20a%20Fully%20Nonlocal%20Heat%20Equation&rft.jtitle=Vietnam%20journal%20of%20mathematics&rft.au=Cort%C3%A1zar,%20Carmen&rft.date=2021-09-01&rft.volume=49&rft.issue=3&rft.spage=831&rft.epage=844&rft.pages=831-844&rft.issn=2305-221X&rft.eissn=2305-2228&rft_id=info:doi/10.1007/s10013-020-00452-w&rft_dat=%3Cproquest_cross%3E2560320738%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4c185c53fa7e724a9bf366561ce7f0d006e4c4c7132487fc3fe1b7f2821a1eec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560320738&rft_id=info:pmid/&rfr_iscdi=true