Loading…

Stability properties of a crack inverse problem in half space

We show in this paper a Lipschitz stability result for a crack inverse problem in half space. The direct problem is a Laplace equation with zero Neumann condition on the top boundary. The forcing term is a discontinuity across the crack. This formulation can be related to geological faults in elasti...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2021-09, Vol.44 (14), p.11498-11513
Main Authors: Volkov, Darko, Jiang, Yulong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2939-8284b07c9cbecfbc8d8f9f96f9d5935c9ede9055dac5eef358499179f7ed77a63
cites cdi_FETCH-LOGICAL-c2939-8284b07c9cbecfbc8d8f9f96f9d5935c9ede9055dac5eef358499179f7ed77a63
container_end_page 11513
container_issue 14
container_start_page 11498
container_title Mathematical methods in the applied sciences
container_volume 44
creator Volkov, Darko
Jiang, Yulong
description We show in this paper a Lipschitz stability result for a crack inverse problem in half space. The direct problem is a Laplace equation with zero Neumann condition on the top boundary. The forcing term is a discontinuity across the crack. This formulation can be related to geological faults in elastic media or to irrotational incompressible flows in a half space minus an inner wall. The direct problem is well posed in an appropriate functional space. We study the related inverse problem where the jump across the crack is unknown, and more importantly, the geometry and the location of the crack are unknown. The data for the inverse problem are of Dirichlet type over a portion of the top boundary. We prove that this inverse problem is uniquely solvable under some assumptions on the geometry of the crack. The highlight of this paper is showing a stability result for this inverse problem. Assuming that the crack is planar, we show that reconstructing the plane containing the crack is Lipschitz stable despite the fact that the forcing term for the underlying PDE is unknown. This uniform stability result holds under the assumption that the forcing term is bounded above and the Dirichlet data are bounded below away from zero in appropriate norms.
doi_str_mv 10.1002/mma.7509
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560492781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560492781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-8284b07c9cbecfbc8d8f9f96f9d5935c9ede9055dac5eef358499179f7ed77a63</originalsourceid><addsrcrecordid>eNp10E1PwzAMBuAIgcQYSPyESFy4dDhp09QHDtPEl7SJA3CO0tQRHe1akg60f0_HuHKyLD-yrZexSwEzASBv2tbOtAI8YhMBiInIdH7MJiA0JJkU2Sk7i3ENAIUQcsJuXwZb1k097Hgfup7CUFPkneeWu2DdB683XxQi7adlQ-3Y83fbeB576-icnXjbRLr4q1P2dn_3unhMls8PT4v5MnESU0wKWWQlaIeuJOdLV1SFR4-5x0phqhxSRQhKVdYpIp-qIkMUGr2mSmubp1N2ddg7fvG5pTiYdbcNm_GkkSqHDKUuxKiuD8qFLsZA3vShbm3YGQFmH44ZwzH7cEaaHOh33dDuX2dWq_mv_wH-ZGU_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560492781</pqid></control><display><type>article</type><title>Stability properties of a crack inverse problem in half space</title><source>Wiley</source><creator>Volkov, Darko ; Jiang, Yulong</creator><creatorcontrib>Volkov, Darko ; Jiang, Yulong</creatorcontrib><description>We show in this paper a Lipschitz stability result for a crack inverse problem in half space. The direct problem is a Laplace equation with zero Neumann condition on the top boundary. The forcing term is a discontinuity across the crack. This formulation can be related to geological faults in elastic media or to irrotational incompressible flows in a half space minus an inner wall. The direct problem is well posed in an appropriate functional space. We study the related inverse problem where the jump across the crack is unknown, and more importantly, the geometry and the location of the crack are unknown. The data for the inverse problem are of Dirichlet type over a portion of the top boundary. We prove that this inverse problem is uniquely solvable under some assumptions on the geometry of the crack. The highlight of this paper is showing a stability result for this inverse problem. Assuming that the crack is planar, we show that reconstructing the plane containing the crack is Lipschitz stable despite the fact that the forcing term for the underlying PDE is unknown. This uniform stability result holds under the assumption that the forcing term is bounded above and the Dirichlet data are bounded below away from zero in appropriate norms.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7509</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Computational fluid dynamics ; Dirichlet problem ; Elastic media ; Fluid flow ; Geological faults ; Incompressible flow ; integral equation ; Inverse problems ; inverse problems for PDEs ; Laplace equation ; Norms ; Stability</subject><ispartof>Mathematical methods in the applied sciences, 2021-09, Vol.44 (14), p.11498-11513</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-8284b07c9cbecfbc8d8f9f96f9d5935c9ede9055dac5eef358499179f7ed77a63</citedby><cites>FETCH-LOGICAL-c2939-8284b07c9cbecfbc8d8f9f96f9d5935c9ede9055dac5eef358499179f7ed77a63</cites><orcidid>0000-0001-9203-9583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Volkov, Darko</creatorcontrib><creatorcontrib>Jiang, Yulong</creatorcontrib><title>Stability properties of a crack inverse problem in half space</title><title>Mathematical methods in the applied sciences</title><description>We show in this paper a Lipschitz stability result for a crack inverse problem in half space. The direct problem is a Laplace equation with zero Neumann condition on the top boundary. The forcing term is a discontinuity across the crack. This formulation can be related to geological faults in elastic media or to irrotational incompressible flows in a half space minus an inner wall. The direct problem is well posed in an appropriate functional space. We study the related inverse problem where the jump across the crack is unknown, and more importantly, the geometry and the location of the crack are unknown. The data for the inverse problem are of Dirichlet type over a portion of the top boundary. We prove that this inverse problem is uniquely solvable under some assumptions on the geometry of the crack. The highlight of this paper is showing a stability result for this inverse problem. Assuming that the crack is planar, we show that reconstructing the plane containing the crack is Lipschitz stable despite the fact that the forcing term for the underlying PDE is unknown. This uniform stability result holds under the assumption that the forcing term is bounded above and the Dirichlet data are bounded below away from zero in appropriate norms.</description><subject>Computational fluid dynamics</subject><subject>Dirichlet problem</subject><subject>Elastic media</subject><subject>Fluid flow</subject><subject>Geological faults</subject><subject>Incompressible flow</subject><subject>integral equation</subject><subject>Inverse problems</subject><subject>inverse problems for PDEs</subject><subject>Laplace equation</subject><subject>Norms</subject><subject>Stability</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10E1PwzAMBuAIgcQYSPyESFy4dDhp09QHDtPEl7SJA3CO0tQRHe1akg60f0_HuHKyLD-yrZexSwEzASBv2tbOtAI8YhMBiInIdH7MJiA0JJkU2Sk7i3ENAIUQcsJuXwZb1k097Hgfup7CUFPkneeWu2DdB683XxQi7adlQ-3Y83fbeB576-icnXjbRLr4q1P2dn_3unhMls8PT4v5MnESU0wKWWQlaIeuJOdLV1SFR4-5x0phqhxSRQhKVdYpIp-qIkMUGr2mSmubp1N2ddg7fvG5pTiYdbcNm_GkkSqHDKUuxKiuD8qFLsZA3vShbm3YGQFmH44ZwzH7cEaaHOh33dDuX2dWq_mv_wH-ZGU_</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Volkov, Darko</creator><creator>Jiang, Yulong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-9203-9583</orcidid></search><sort><creationdate>20210930</creationdate><title>Stability properties of a crack inverse problem in half space</title><author>Volkov, Darko ; Jiang, Yulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-8284b07c9cbecfbc8d8f9f96f9d5935c9ede9055dac5eef358499179f7ed77a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Dirichlet problem</topic><topic>Elastic media</topic><topic>Fluid flow</topic><topic>Geological faults</topic><topic>Incompressible flow</topic><topic>integral equation</topic><topic>Inverse problems</topic><topic>inverse problems for PDEs</topic><topic>Laplace equation</topic><topic>Norms</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, Darko</creatorcontrib><creatorcontrib>Jiang, Yulong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, Darko</au><au>Jiang, Yulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability properties of a crack inverse problem in half space</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-09-30</date><risdate>2021</risdate><volume>44</volume><issue>14</issue><spage>11498</spage><epage>11513</epage><pages>11498-11513</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We show in this paper a Lipschitz stability result for a crack inverse problem in half space. The direct problem is a Laplace equation with zero Neumann condition on the top boundary. The forcing term is a discontinuity across the crack. This formulation can be related to geological faults in elastic media or to irrotational incompressible flows in a half space minus an inner wall. The direct problem is well posed in an appropriate functional space. We study the related inverse problem where the jump across the crack is unknown, and more importantly, the geometry and the location of the crack are unknown. The data for the inverse problem are of Dirichlet type over a portion of the top boundary. We prove that this inverse problem is uniquely solvable under some assumptions on the geometry of the crack. The highlight of this paper is showing a stability result for this inverse problem. Assuming that the crack is planar, we show that reconstructing the plane containing the crack is Lipschitz stable despite the fact that the forcing term for the underlying PDE is unknown. This uniform stability result holds under the assumption that the forcing term is bounded above and the Dirichlet data are bounded below away from zero in appropriate norms.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7509</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9203-9583</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-09, Vol.44 (14), p.11498-11513
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2560492781
source Wiley
subjects Computational fluid dynamics
Dirichlet problem
Elastic media
Fluid flow
Geological faults
Incompressible flow
integral equation
Inverse problems
inverse problems for PDEs
Laplace equation
Norms
Stability
title Stability properties of a crack inverse problem in half space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20properties%20of%20a%20crack%20inverse%20problem%20in%20half%20space&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Volkov,%20Darko&rft.date=2021-09-30&rft.volume=44&rft.issue=14&rft.spage=11498&rft.epage=11513&rft.pages=11498-11513&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7509&rft_dat=%3Cproquest_cross%3E2560492781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2939-8284b07c9cbecfbc8d8f9f96f9d5935c9ede9055dac5eef358499179f7ed77a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560492781&rft_id=info:pmid/&rfr_iscdi=true