Loading…

Evaluation of silane-based surfactant nanohybrid as flow improver in a Malaysian light crude oil

Paraffin deposition in the crude oil production pipeline has been an alarming problem to the flow assurance community. This phenomenon causes a tremendous amount of material loss in the production and substantial resources are expended to resolve these flow assurance problems-which included the chem...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2019-01, Vol.469 (1), p.12001
Main Authors: Lim, Z H, Al Salim, H S, Hasiholan, B, Ridzuan, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Paraffin deposition in the crude oil production pipeline has been an alarming problem to the flow assurance community. This phenomenon causes a tremendous amount of material loss in the production and substantial resources are expended to resolve these flow assurance problems-which included the chemical treatment. This study examined an agricultural non-ionic silane-based surfactant and its blends (with silica nanoparticles) as a flow improver using Malaysian light crude oil (42.4°API). In particular, this study performed the following experimental measurements: wax appearance temperature, pour point, viscosity, and FTIR spectroscopic analysis. The result showed that the surfactant-nanoparticles blend affected the viscosity (significant reduction by approximately 67 %) within certain temperature range and were able to depress both pour point (to 4°C) and wax appearance temperature (15.6°C). It was also revealed that the most potent blend consisted 400 ppm of silane-based surfactant and 200 ppm of SiO2 nanoparticles. The study also evaluated the underlying mechanisms for the variation of viscosity through FTIR spectroscopic analysis.
ISSN:1757-8981
1757-899X
1757-899X
DOI:10.1088/1757-899X/469/1/012001